Following the social requirement to strengthen field supervision of the asbestos containing materials (ACM) abatement process with regard to asbestos school buildings, this study was conducted to understand the status and characteristics of airborne asbestos that may potentially occur after the ACM abatement process is completed. In the area where a series of asbestos abatement processes were finally completed, comprehensive area air sampling was performed. For sample analysis, Transmission Electron Microscopy (TEM) was used according to The Asbestos Hazard Emergency Response Act (AHERA) method and Phase Contrast Microscopy (PCM) analysis was also performed. Airborne asbestos was detected in 29.5% of the total samples, and the average concentration was 0.0039 ± 0.0123 s/cc (12.3 ± 38.9 s/mm2). 4.5% of the total samples exceeded the AHERA standard (70.0 s/mm2) and the average concentration was 0.0528 ± 0.0256 s/cc (167.2 ± 82.0 s/mm2). Airborne asbestos was no longer detected at the point when AHERA is exceeded after re-cleaning. Most of the detected asbestos was chrysotile (94.4%) and the structure types of asbestos were Matrix (41.4%), Fiber (39.9%), Bundle (10.8%), and Cluster (7.8%). Among the asbestos structures detected through transmission electron microscope analysis, the asbestos structures satisfying PCM-equivalent structures were found to be 6% of the detected asbestos, indicating that there is a limitation of the PCM analysis to check the airborne asbestos in that area. As a result of reviewing the status of airborne asbestos that may potentially occur and the type and dimensions of asbestos structure detected in the area, since the airborne asbestos exposure caused by poor field supervision for the ACM abatement process could not be ruled out, thorough management is necessary. In addition, the result of this study could be used as scientific evidence for establishing and strengthening policies related to ACM abatement, including cases of school buildings.