Industrial complex areas are an important factor that contributes to economic development. However, these areas also produce a significant amount of noxious air pollutants. In particular, PM10 emitted from industrial complex areas can lead to detrimental effects on human health. This study was conducted to survey environmental conditions and measure the concentration of PM10 in indoor and outdoor living spaces in Yeosu and Gwangyang. In Yeosu, the level of PM10 concentration in indoor living spaces was measured at 49.38 μg/m3, while the outdoor level was measured at 43.60 μg/m3. In Gwangyang, the PM10 concentration in indoor living spaces was measured at 20.08 μg/m3 while the outdoor measurement came to 18.14 μg/m3. When analyzing the percentage of those who were highly concerned with environmental pollution among a survey group of 200 people, Yeosu City had a rate of 76.5%, while Gwangyang City had a comparable rate of 73%. When looking at the time-activity patterns of residents in both locations, Yeosu residents spend more than 80.0% of their time inside their living spaces, while Gwangyang residents spend more than 70.0% of time inside their living spaces. These high rates are largely due to the fact that most of the residents of these areas are elderly. In both Yeosu and Gwangyang, it was found that 40% of residents use TV and radio rather than newspapers or handouts to obtain information about environmental pollution problems in their area.
This study was conducted to determine the concentration of heavy metals and their characteristics in the bodies of 2,446 residents living near industrial areas from 2007 to 2015. The concentration of heavy metals showed diverse characteristics according to gender, food types consumed and period of residence. Especially, levels of cadmium and mercury were high in the urine samples of the group that had lived in the local area for a long time. In order to obtain more accurate results, it will be necessary to comprehensively study the influence and effects from such matters related to lifestyle, eating habits and levels of environmental pollutants.
In this study, we investigated the Indoor and Outdoor concentrations of PM10 in Y area, Jeollanam-do. We conducted personal exposure concentration estimates, and Exposure and Risk Assessments using the Time-weighted Average Model. The concentration of Indoor PM10 was 49.38 μg/m3 and that of Outdoor PM10 was 48.02 μg/m3, with the Indoor/ Outdoor Ratio value being 1 or more, and it was found that there was an indoor source of pollution. The Indoor/Outdoor Cr ratio value was 1 or more, and the source of Cr was confirmed to be indoor. Based on our analysis, there was a positive correlation between heavy metals Ni, Cr, and Mn (p<0.05). Using the Time-Weighted Average model, we determined the PM10 personal exposure concentration to be 49.36 μg/m3 and confirmed the feasibility of this model in utilizing the PM10 personal exposure concentrations. In this study, the findings are likely to provide useful data that can be used to determine the concentration of indoor pollutants that are not easy to survey. However, to accurately evaluate indoor air quality, more factors need to be considered and evaluated.
This study obtained the following conclusions using the measurement results of indoor and outdoor PM10 with regard to cardiovascular disease patients in Cheongju-area in November 2020. Most of the PM10 has an I/O ratio of less than 1, which is an outdoor source. Since we measured once and twice time, Without the air purifier device’s working status, there were no concentration changes of PM10 in the first and second indoor areas. As for the concentration of PM10 according to the living environment, the distribution of PM10 is higher indoors than outdoors when the residential area is 30 m2 or more, and the outdoor PM10 concentration tends to be high when the distance to the road is within 50 m. The more time spent indoors, the higher the indoor PM10 concentration. The smaller the ventilation time and frequency, the longer the cooking time was, and the higher the number of cooking times, the higher the concentration of PM10 could be. The indoor PM10 contribution ratio through multiple regression analysis showed the possibility of increasing indoor PM10 as β = 28.590 when the time spent indoors was longer than 16 hours (p<0.05). The result regarding PM10 exposure reveals that PM10 can be inhaled not only indoors but also outdoors, and the subjects of this study appear to have lived indoors for about 16 hours or longer on a daily basis, which may affect their health regardless of gender.
This study investigated 180 students’ indoor environmental awareness of rest spaces and measured the indoor and outdoor concentrations of PM10, TVOCs, and HCHO in 8 rest spaces from October 2019. 89.4% of the students responded that they use rest spaces at least once a day and most of the respondents are using rest spaces in the university. The largest number of students responded to the tight space as the main cause of air pollution in rest spaces. 62.1% of the students answered they experienced health symptoms from using rest spaces. Among them, 32.5% said they experienced irritation symptoms of eyes, neck, nose, and 12.1% answered that they experienced headaches. Indoor PM10, TVOCs, and HCHO levels did not exceed indoor air quality recommendations nor the maintenance standard for multi-use facilities. Indoor PM10, TVOCs, and HCHO levels did not exceed indoor air quality recommendations nor the maintenance standard for multi-use facilities. According to the type of rest space, concentrations of PM10, TVOCs, and HCHO were higher among the closed-type than open-type rest space. Even if the concentration of pollutants is less than the environmental standard, continuous exposure may cause negative health effects. In addition, considering that 62.1% of the respondents experienced health symptoms, it is deemed necessary to take measures to manage indoor environments in rest spaces and to develop measures to reduce pollutants.
This study conducted a survey on environmental awareness and analyzed outdoor PM10 and heavy metals (cadmium, lead) for 60 local residents living in the Gwangyang national industrial complex from July 2019. 40.0% of subjects responded that local environmental pollution was serious. Especially, there was a high proportion of residents living near the industrial complex or roads where it was perceived that local environmental pollution was serious. The average concentration of PM10 in the outdoors of the houses was 10.95 μg/m3 and the average concentration of heavy metals in PM10 was 1.90 ng/m3 for Cd and 24.92 ng/m3 for Pb. Overall, the average concentration of PM10 and heavy metals revealed a tendency to be high in the houses located near the industrial complex or the roads. As a result of a risk assessment carried out, the cancer risk of Cd was estimated to exceed 106 in the CTE, RME and Monte Carlo analysis. These results suggest that the urgent implementation of specific environmental health education for local residents is necessary.
This study examined the relevance of impact factors using survey data, standardized mortality rates, and medical utilization rates of study subjects in the Namhae and Hadong regions. The study subjects were found to have lived in the area for more than 20 years, and in terms of lifestyle, they did not smoke, but the rate of drinking was high and showed little exercise. As a result of analysis through logistic regression analysis, it was found that angina pectoris, myocardial infarction and anemia were affected by exercise status, and allergic rhinitis disease showed significant results depending on the presence of smoking. The standardized mortality rate of men in chronic lower respiratory tract diseases in the Namhae and Hadong regions was higher than in the nation. In the case of allergic rhinitis, both men and women in Namhae were slightly lower than those in Nation, and in Hadong, both men and women were higher than in Nation.
The goal of this study was to measure the indoor and outdoor fine and ultrafine particulate matter concentrations (PM10, PM1.0) of some houses in Yeosu and in S university in Asan from March to September 2018. PM10 concentration in indoor air in Yeosu area was 18.25 μg/m3, while for outdoor air it was 14.53 μg/m3. PM1.0 concentration in indoor air in the Asan area was 1.70 μg/m3, while for outdoor air it was 1.76 μg/m3, showing a similar trend. Heavy metal concentrations in the Yeosu region were the highest, at Mn 2.81 μg/m3, Cr 1.30 μg/ m3, and Ni 1.11 μg/m3 indoors. Outside, similar concentrations were found, at Cr 3.44 μg/m3, Mn, 2.60 μg/m3, and Ni 1.71 μg/m3. Our analysis of indoor and outdoor PM concentrations in the Asan region, which was carried out using the MOUDI (Micro-orifice Uniform Deposit Impactor) technique, found that PM concentration is related to each particle size concentration, as the concentration of 18 μm and 18-10 μm inside tends to increase by 3.2- 1.8 μm and 0.56-0.32 μm.
In this study, 38 residents of the Jeonnam areas in Korea were assessed for their level of exposure to VOCs. The aim was to understand the difference in levels of indoor, outdoor, and personal exposure to VOCs (benzene, toluene, ethylbenzene) and a health effect assessment was conducted to determine whether there was any fatal cause from carcinogenic or non-carcinogenic elements from case and control group. Personal exposure to benzene showed a higher distribution than indoor and outdoor concentrations, and it was found that the average concentration of the case group was higher than that of the control group in all indoor, outdoor, and personal exposures. With regard to benzene, in the CTE, RME, and Monte-Carlo analysis, all subjects in the case group were seen to exceed the lifetime cancer risk of 10−6 defined by the US EPA and in the RME analysis the control group subjects were also seen to exceed the lifetime cancer risk of 10−6 defined by the US EPA. In the case of toluene, ethylbenzene on the CTE, RME, and Monte-Carlo analysis, the non-carcinogenic standard of 1 was not exceeded.
This study aims to evaluate the concentration of biomarkers for heavy metals and volatile organic compounds (VOCs) for the residents living in the Gwangyang industrial complex to compare with residents in the residential area as a control. A total of 810 healthy adults participated in this study, and their urinary and blood samples were analyzed for metals, including As, Pb, Cd, or Hg, and VOC compounds. All study participants also completed questionnaire surveys to collect more detailed information on personal lifestyles, dietary and drinking habits, residential housings types, and their health conditions. The geometric means of urinary levels of Cd were 1.06 g/g creatinine for those living in the vicinity of Gwangyang industrial complex and 1.41 g/g creatinine for those in residential areas (p<0.05). Furthermore, urinary mean levels of Hg were 1.39 μg/g creatinine in the industrial area and 1.23 μg/g creatinine in the control area, respectively. The concentrations of individual VOCs in blood were significantly different between the two population groups. Therefore, urinary levels of Cd and Hg were significantly higher in the local residents compared to the Gwangyang industrial areas. A further study is needed to identify adverse health effects due to environmental exposures to heavy metals, VOCs, and other pollutants in the Gwangyang industrial complex areas in the future.
In this study, 102 residents in Gwangyang and Yeosu were evaluated for exposure to levels of urethral arsenic from April 2017 to June 2018. The geometric mean concentration of the urinary arsenic in the total studied was 154.30 μg/L, with the figure for the Gwangyang area being 201.18 μg/L and the figure for the Yeosu area being 200.21 μg/L, which signifies that there was no real difference between the two regions. The figures for males and females were 173.81 μg/L and 136.98 μg/L, respectively, indicating higher levels for males. In the case of males, the risk assessment of arsenic (As) showed that 0.54 does not exceed 1 and approximately 11.3% exceeded the reference value. For women, the number of hazardous materials did not exceed 1.41 and approximately 5.1% exceeded the reference value of the total arsenic exposure survey.
In this study, 40 residents of the Gwangyang and Yeosu areas were assessed for their level of exposure to heavy metals (As, Cd, Ni) from April 2017 to June 2018. The aim was to understand the differences in levels of indoor exposure to heavy metals (As, Cd, Ni), and a health risk assessment was conducted to determine whether there was any fatal cause from carcinogenic elements. The mean concentrations of PM10 particles indoors were As 0.24 μg/m3, Cd 0.07 μg/m3, and Ni 0.89 μg/m3. The health risk assessment for the arsenic, cadmium, and nickel in indoor air confirmed that the mean values exceeded the cancer risk tolerances specified by the U.S. EPA, for As (males 3.07 × 10−4, females 3.35 × 10−4), Cd (males 3.83 × 10−5, females 4.18 × 10−5), and Ni (males 6.36 × 10−5, females 6.95 × 10−5).
In this study, we measured the concentration of Particulate Matter(PM10), Formaldehyde(HCHO), and Total Bacteria Count (TBC) at two facilities: day care centers, and postnatal care centers located in the cities of Gyeonggi, Gangwon, Jeolla and Gyeongsang from January 1, 2012 to December 31, 2015. PM10 concentration was similar to the day care centers and postnatal care centers. HCHO concentration was the highest in the postnatal care centers. TBC concentration was the highest in the day care centers. Comparing the different cities, PM10 concentration was the highest in Gyeonggi, HCHO concentration was the highest in Gyeonggi, and TBC concentration was the highest in Gyeonggi. As a result of HCHO's risk assessment, it was found that adults exceeded the carcinogenicity tolerance of 10−6 specified by the US EPA. This study is expected to be helpful in preventing damage to health from the contaminated indoor air at sensitive facilities, and can be used as basic data for indoor air quality management.
In this study, we measured the concentration of Particulate Matter (PM10), Formaldehyde (HCHO), and Total Bacteria Count (TBC) at three facilities: elderly care centers, day care centers, and postnatal care centers located in the cities of Seoul, Sejong, Daegu and Ulsan from January 1, 2012 to December 31, 2015. PM10 concentration was the highest in the day care centers and HCHO concentration was the highest in the postnatal care centers. TBC concentration was the highest in the day care centers. Comparing the different cities, PM10 concentration was the highest in Sejong, HCHO concentration was the highest in Seoul, and TBC concentration was the highest in Daegu. This study is expected to be helpful in preventing damage to health from the contaminated indoor air at sensitive facilities, and can be used as basic data for indoor air quality management.
To obtain basic data on bioaerosols in the indoor environments of houses located adjacent to Gwangyang Iron Works, the concentration and diversity of indoor air molds were comparatively investigated in 33 houses in September of 2016 and 2017, respectively. In areas both adjacent to and nonadjacent to Gwangyang Iron Works, house temperature and humidity ranged from 24~28oC and 47~57%, respectively. Airborne mold concentration was higher in the houses located nonadjacent than in the ones adjacent to the iron works. Interestingly, the level of airborne mold concentration exceeded 500 CFU/m3 in all houses nonadjacent to the iron works. A total of 12 mold species including five pathogenic species were indentified from the investigation. Among the five pathogenic species, the causal agents of otomycosis, Alternaria alternata, Aspergillus fumigatus, and A. niger were present. Overall, Cladosporium cladosporioides was the dominant species. This is the first report on the concentration and diversity of airborne mold in houses located adjacent and nonadjacent to Gwangyang bay industrial complex in Korea.
This study was conducted targeting 30 residents of Gwangyang industrial complex area from April to May 2017 to assess their level of exposure to VOCs and conduct a health risk assessment for individual exposure. The aim was to understand the difference in levels of indoor, outdoor and personal exposure to VOCs (benzene, toluene, ethylbenzene, m-xylene, p-xylene, o-xylene) and a health risk assessment was conducted to determine whether there was any fatal cause from carcinogenic or non-carcinogenic elements from a respiratory disease patients. In the case of benzene in the air, the geometric levels of the group are indoor, outdoor and personal exposure; on the CTE, RME condition and Monte-Carlo analysis, all subjects were seen to exceed the carcinogenicity tolerance of 10−6 specified by the US EPA. In the case of toluene, ethylbenzene, m-xylene, p-xylene, o-xylene on the CTE, RME condition and Monte-Carlo analysis, the non-carcinogenic standard of 1 was not exceeded.
This study was carried out to investigate the presence of a correlation between heavy metals in urine samples and upper airway diseases. For the study, 51 household residents of Gwangyang, both with and without upper airway disease, were targeted. Urine samples were collected from the subjects along with a questionnaire from April 24th to 27th, 2017. The heavy metals in the urine samples were preprocessed and analyzed using an inductively coupled plasma/mass spectrometer. The geometric mean concentration of urinary arsenic and cadmium was 138.66 μg/L and 0.75 μg/g creatinine among those with upper airway disease and 166.42 μg/L and 1.19 μg/ g creatinine among those without upper airway disease. This was not a statistically significant difference. The concentration of urinary arsenic and cadmium was found to be increased by 1.19 times (95% CI; 0.15-9.31) and 1.26 times (95% CI; 0.31-5.04) in household residents with upper airway diseases with more than 144.86 μg/L and 0.85 μg/g creatinine, respectively.
This study aims to analyze the effects of 4 directions of wind, wind speed, year of construction of slate roofs, installation area and other factors on the concentration and size distribution of airborne fiber particles in farmhouses with a slate roof containing asbestos. Airborne fiber particle samples were collected from the air in six houses with a slate roof containing asbestos using a high flow rate pump (10 L/min) for 2 hours, three times a day with a different condition, 72 times in total. The airborne fiber particle concentrations were measured using a phase contrast microscope, and the size of fiber particles of 72 samples in total was estimated using the mean value of those in each sample measured at 100 with a field of view. The total average concentration of fiber particles collected from in the air in four directions of the targeted farmhouses was 2.83 fiber/L, and its maximum concentration was 5.75 fiber/L, which means that among all samples there was no place that exceeded 10 fiber/L, a recommended indoor air quality standard. The average size of the fiber particles was 11.55 μm, and the maximum size was 40 μm. A multiple regression analysis of factors affecting the concentration and size of fiber particles in the air collected from the farmhouses with a slate roof containing asbestos found that the closer to the main wind direction (p<0.001) and the faster the average wind speed (p<0.05), the fiber particles concentration became significantly higher. In this case, the coefficient of determination was 52.8%. It was also found that the wider the total area of the slate roof (p<0.001) and the slower the average wind speed (p<0.05), the longer the fiber particles; the coefficient of determination for this finding was 19.6%. The concentration of fiber particles in the air of farmhouses with a slate roof appeared to be the highest under the main wind direction, and became significantly higher as the wind speed became faster. This proved that fiber particles were leaked from the slate roof. The size of the fiber particles became significantly longer as the area of the slate roof became wider and the wind speed became slower.
The purpose of this study was to evaluate the concentration of airborne particulate matter and heavy metals in the houses of the respiratory tract disease patients and a control group of residents in the city of Gwangyang. The particulate matter was measured using a mini-volume air sampler and then weighed three times using a micro balance to calculate the weighted average value. The heavy metals in the particulate matter were extracted using a hot plate and analyzed using an inductively coupled plasma/mass spectrometer. The average concentration of particulate matter in the outdoor air (34.478 μm/m3) was higher than that in the indoor air (16.794 μm/m3), showing a statistically significant difference (p<0.001). The average concentration of copper, manganese and chromium in the indoor and outdoor air were higher in the houses of those in the study group than those of the control group. In addition, there was a generally high correlation between particulate matter in the outdoor air and heavy metals in the indoor and outdoor air concentration (p<0.05).
The objectives of this study were to investigate the effects of PM10 and O3 concentration on the symptoms of allergic diseases. The questionnaire was used to determine whether or not symptoms of allergic diseases were present from September to October 2012. The air pollution concentration data used was the corresponding point CEM (continuous emission monitoring) data. The average concentration of PM10 was 56.09 μg/m3 in the control area, and the concentration in the exposed area was 40.44 μg/m3. In the two areas, concentration of O3 was 28.73 ppb and 28.74 ppb, respectively. The total average concentrations of PM10 and O3 were 45.66 μg/m3 and 28.73 ppb in the Gwangyang area. The rate of asthma diagnosis was higher in the control area (9.6%) than in the exposed area (4.1%), but the rate of allergy eye disease was higher in the exposed area (23.9%) than in the control area (16.5%). There was a significant difference in the symptoms of some allergic diseases when the relative concentration of PM10 and O3 were high and low.