간행물

실내환경 및 냄새 학회지 KCI 등재 Journal of Odor and Indoor Environment

권호리스트/논문검색
이 간행물 논문 검색

권호

제21권 제3호 (2022년 9월) 9

1.
2022.09 구독 인증기관 무료, 개인회원 유료
Most of the white fumes from the tenter process of a textile plant in an industrial complex are generated by water vapor and oil mist. While general water vapor disappears when the humidity is lowered, the white fume generated in the tenter process does not disappear and is continuously maintained, resulting in environmental problems and complaints. Efforts to reduce white fume are being conducted, but it is vitally important to develop a performance index that quantitatively calculates and deduces the degree by which white fume has been reduced, so that a tangible and visible result can be obtained in the performance evaluation of prevention facilities. In this study, the removal efficiency or performance of a general wet scrubber and a wet electrostatic precipitator (electrical fume collector, EFC) installed in the actual textile tenter process was analyzed by the light scattering method that can measure the concentration of particles up to a high level. The white fume removal efficiency of the EFC was 92%, much higher than the 17% removal efficiency of the general scrubber. In addition, the EFC was more effective in removing toluene, 1,1'- [oxybis(methylene)]bis- Benzene, and benzothiazole, which are the major substances generated from the textile tenter process, as well as complex odors. From these results, it was found that the light scattering method is one of the useful tools to evaluate the performance of white fume prevention facilities in the industrial field in terms of satisfying the urgent need for measurement and the ability to obtain a clear and precise result on site. This approach is meaningful in that real-time quantification is applicable more intuitively than the gravimetric method in assessing the fume removal performance as it can be observed with the naked eye.
4,200원
2.
2022.09 구독 인증기관 무료, 개인회원 유료
Air curtains, blowing air streams across a doorway, were installed in trial trains on subway line 7 in 2021 and they have been operated with dust collectors to improve the air quality of subway trains. In this study, we investigated the effects of air curtains on the indoor air quality in the trial subway trains. The concentrations of PM2.5 and carbon dioxide in the four selected cabins were measured in the morning hours (e.g., 7:30–11:30 am including the morning rush hour). The measurements were conducted on February 26, March 31, April 30, and May 14, 2021 and air curtain (AC)s and dust collector (DC)s in the four cabins were operated differently on those measuring days. All devices were turned off in the control cabin and only ACs, only DCs, and both the ACs and DCs were turned on in the other three cabins, respectively. The 4-h-averaged PM2.5 concentrations in the cabins, where only ACs and only DCs are turned on, are lower than in the control cabin by 18% and 26%, respectively. In addition, the joint operation of ACs and DCs can decrease the PM2.5 concentration by up to 42%. The time series of PM2.5 concentrations, measured on April 30, illustrate again that ACs block the intrusion of outside particulate matters. The 4-h-averaged carbon dioxide concentrations in the four cabins do not show monotonic differences between the cabins because of the generation of carbon dioxides inside the cabins. When the weights of individual cars and thus the numbers of passengers are similar between the cabins, the carbon dioxide concentrations in the ACs-operated cabins are higher than in the control cabin. This indicates that ACs can block the outward emission of carbon dioxides and maybe other indoor air pollutants as well.
4,000원
3.
2022.09 구독 인증기관 무료, 개인회원 유료
Black carbon (BC), which is mainly contained in fine particulate matters, is one of the typical anthropogenic air pollutants that are generated from the incomplete combustion process and discharged into the atmosphere, and its various health effects particularly on children have been a growing concern. In this study, BC and particulate matters were closely analyzed in an elementary school adjacent to a high- traffic road in a large metropolitan city. The investigation showed that black carbon behaved similarly to ultrafine dust of 0.3 μm or less in the air, accounting for 20%-40% of it. The occurrence of high concentration outdoor pollution influences the BC content in indoor particulate matters. The average I/O value was 0.7 during the class-hours, and 0.8 without students. However, when students played in the classroom, the range of BC concentrations varied from 0.25 to 1.15, wider than 0.41-1.13 without students. Although this study was conducted with regard to just one elementary school, it can be considered to represent the typical air quality status of domestic schools, and it is believed to present valuable data which can be utilized to assist with preparing measures to enhance the air quality management of schools.
4,000원
4.
2022.09 구독 인증기관 무료, 개인회원 유료
This study measured the suspended fungal concentration in indoor multiple facilities nationwide. The regions were selected as representative cities by region: Seoul, Gyeonggi (Incheon), Gangwon, Gwangju, Daejeon, and Busan. A total of 2028 regional comparisons, including department stores, schools, public toilets, libraries, and banks, subway, sports facilities and comparative analysis were conducted for each multi-use facility industry. Among the nationwide, Among the regions, the average concentration of floating mold in indoor multi-use facilities was the lowest in Busan at 394.67 CFU/m3, followed by Gyeonggi and Incheon 487.90 CFU/m3, Seoul 542.84 CFU/m3, Daejeon 809.30 CFU/m3, Gangwon 1,145.22 CFU/m3, Gwangju was 1,371.10 CFU/m3 in the order. Busan was the lowest, and Gangwon was the highest. The reason that Busan, which has a high average temperature and population density, shows a lower mold concentration than Gangwon, is that floating mold in the indoor air is not affected by the external atmospheric environment, population density, and number of facility users. Although it cannot be said that there is no influence of the atmospheric environment, it was found that the indoor environment has different characteristics from the outdoor environment. The importance of air quality management has been confirmed, and further, it is necessary to subdivide the management standards by region and multi-use facilities, and the management standards need to be converted to maintenance rather than recommendations.
4,200원
5.
2022.09 구독 인증기관 무료, 개인회원 유료
Coffee is the most popular beverage in the world and various pollutants, including volatile organic compounds (VOCs), are emitted from the coffee manufacturing workplace (roasting process). In this study, we analyzed the characteristics of VOCs emissions from roasted Arabica coffee bean powder using a VOCs emission chamber with a PTR-ToF-MS. The emission test was maintained under constant temperature (20 ± 2oC) and humidity (50 ± 5%) conditions. As a result of the emission test, most of the target compounds had a high concentration in the initial period, and decreased emissions as time lapsed. Acetaldehyde showed the highest concentration and was initially 78 ppm during the test period. Acetaldehyde was followed by propionic acid at 61 ppm, propanal at 51 ppm, and isobutanal at 50 ppm. As a result of comparing the occupational exposure limits (OELs) of individual VOC emitted during the coffee roasting process, the OELs of four substances, including acetaldehyde, propionic acid, acetic acid, and pyridine were identified. Of all four substances, only pyridine exceeded the OELs, and the other compounds had levels of 10% to 30% of the OELs.
4,000원
6.
2022.09 구독 인증기관 무료, 개인회원 유료
Distribution of airborne bacteria in the entire regions of South Korea was investigated and analyzed by region and type of multi-use facilities. At first, 10 public facilities were selected including general restaurant, retail store, public transport, retail market, apartment house, underground parking lot, financial institution, business facility, educational institution, and public toilet, which are located at the regions such as Seoul, Busan, Daejeon, Gwangju, Gyeonggi, Jeju, and Gangwon. The regional distribution of the floating bacteria was identified that Micrococcus sp. was highly prevalent in Seoul (21.5 percent). In Daejeon, Bacillus sp. was highly prevalent (12.4 percent). In Busan, Micrococcus sp. was highly prevalent (22.8 percent). In Gwangju, Bacillus sp. was 9.35%. In Gyeonggi, Micrococcus sp. was 13.7%, and in Gwangju and Jeju, Micrococcus sp. was 11.2 percent and 92%. All in all, Micrococcus sp. and Bacillus sp. were highly detected throughout the entire region and multi-use facilities. Next, whether or not these airborne bacteria could influence the health of people was examined using HaCat human skin cell line which is human epithermal Karatinocytes related to allergic dermatitis. Among these isolated microorganisms, the HaCat cell proliferation was decreased by Arthrobacter sp., Bacillus sp., Brachybacterium sp., Brevundimonas sp., Kocuria sp., Mammaliicoccus sp., Norcardia sp., Prestia sp., Phychrobacillus sp., and Rhodococcus sp., while it was affected by the other bacteria. Therefore, these results have suggested that the airborne floating bacteria could be considered as the marker for the environmental risk management against atopic dermatitis, and it is needed for controlling the bacteria number that suppressed the proliferation of HaCat cells.
4,000원
7.
2022.09 구독 인증기관 무료, 개인회원 유료
This study was performed to investigate the effects of water molecules on ozone oxidation of acetaldehyde using a manganese oxide catalyst at room temperature. The catalytic ozone oxidation was conducted at different relative humidity (RH) conditions of 0%, 50%, and 80%. As the RH increased, both ozone and acetaldehyde removal efficiencies dropped due to competitive adsorption on the surface of the catalyst. At the highest RH of 80%, the oxidation reaction was severely retarded, and oxidation by-products such as acetic acid were formed and adsorbed on the surface. After the ozone oxidation of acetaldehyde, the regeneration of the catalyst using ozone alone was tested, and the further oxidation of accumulated organic compounds was investigated under the RH conditions of 0%, 50%, and 80%. When the highest relative humidity was introduced in the regeneration step, the ozonation reaction with the by-products adsorbed on the catalyst surface decreased due to the competitive reaction with water molecules. These findings revealed that, only when relative humidity was low to minimize the formation of by-products, the ozone oxidation of acetaldehyde using the manganese oxide catalyst at room temperature can be feasible as an effective control method.
4,000원
8.
2022.09 구독 인증기관 무료, 개인회원 유료
Fungi are organisms that must be monitored and controlled in order to preserve valuable paper records. They reduce the quality of paper records by degradation and/or discoloration. As an effort to understand fungal contamination in the National Archives of Korea, the concentration of fungi in the indoor air of the unsterilized record rooms has been reported. However, what species are present in the facilities is not much known. In the present study, we examined the fungi isolated from the National Archives of Korea and found among them that there are fungal species which are newly documented in Korea. They were identified based on morphological properties and nucleotide sequences analysis of the polymerase chain reaction-amplified the internal transcribed spacer region of rDNA, calmodulin gene, and beta-tubulin gene. We report Cladosporium parahalotolerans, Cladosporium subuliforme, Ochroconis mirabilis, Penicillium angulare, and Penicillium fundyense as new instances of fungal species in Korea. Among these five species, P. angulare is known to able to produce cellulase and O. mirabilis as an opportunistic pathogen of human and animals.
4,000원
9.
2022.09 구독 인증기관 무료, 개인회원 유료
In this study, the distribution characteristics of particulate matter (PM) in subway platforms were investigated, and the performance of hybrid filter systems was determined through the removal efficiency of PM according to various flow rates and filter structures. The hybrid filter systems were constructed in magnetic systems as (Magnet-Magnet (MM) filters and Magnet-Cascade (MC) filters). PM removal efficiencies of these filters were investigated at a subway platform for three days including weekdays and weekends. The compositions of collected PM were also analyzed. Based on the PM measurement in the subway platforms, it was confirmed that the operation of trains had a significant effect on the increase of PM concentration, and a large number of PMs were less than 1 μm in size. For the MC filter, the removal efficiency of PM1 based on the number of particles was up to 30.5%, demonstrating a relatively high removal efficiency in comparison with the MM filter. In terms of PM10, PM removal efficiencies of the MC filter with respect to the mass concentration and the number of particles were 48.3% and 14.5%, respectively. For the MC filter, it was found that the PM removal efficiency was enhanced with the increase in the flow rate. Moreover, the relatively large particle size PM (i.e., 7.5 μm - 10 μm) denoted a maximum removal efficiency of 97% in terms of the number of particles. All PMs collected by the filter were Fecontaining PMs. As a field experiment using the hybrid filter, the applicability of magnetic particle control technology was approved. Based on this result, it is expected that this study will be used as background research for the development of fine dust control technologies in a subway environment.
4,000원