The objective of this study is to analyze the indoor air quality of multi-use facilities using an IoT-based monitoring and control system. Thise study aims to identify effective management strategies and propose policy improvements. This research focused on 50 multi-use facilities, including daycare centers, medical centers, and libraries. Data on PM10, PM2.5, CO2, temperature, and humidity were collected 24 hours a day from June 2019 to April 2020. The analysis included variations in indoor air quality by season, hour, and day of the week (including both weekdays and weekends). Additionally, ways to utilize IoT monitoring systems using big data were propsed. The reliability analysis of the IoT monitoring network showed an accuracy of 81.0% for PM10 and 76.1% for PM2.5. Indoor air quality varied significantly by season, with higher particulate matter levels in winter and spring, and slightly higher levels on weekends compared to weekdays. There was a positive correlation found between outdoor and indoor pollutant levels. Indoor air quality management in multi-use facilities requires season-specific strategies, particularly during the winter and spring. Furhtermore, enhanced management is necessary during weekends due to higher pollutant levels.
The concentration of TVOCs in public transportation in the spring and summer of 2018 was measured. Public transportation measured the concentration of TVOCs on six subway lines in Seoul, two lines of high-speed trains, and intercity buses. The measurements were taken during the operation of each route of the surveyed public transportation from the origin to the destination. In addition, the measurement time was divided into the congestion time and the non-congestion time. In the spring of 2018, in the order of subway, train A, train B, and intercity buses, TVOC concentrations during the congestion time zone were 205.9 μg/m3, 121.3 μg/m3, 171.1 μg/m3, and 88.7 μg/m3, respectively. During the non-congestion time zone, the concentrations were 177.2 μg/m3, 108.8 μg/ m3, 118.2 μg/m3, and 126.1 μg/m3, respectively. In the summer of 2018, TVOC concentrations in the order of the aforementioned transportation modes during the congestion time zone were 169.8 μg/m3, 175.8 μg/m3, 78.0 μg/ m3, and 185.3 μg/m3, respectively. During the non-congestion time zone, the concentrations were 210.8 μg/m3, 116.1 μg/m3, and 162.7 μg/m3, respectively. An analysis of BTEX concentration among VOCs in public transportation in descending order were followed by toluene > xylene > ethylbenzene > benzene. Toluene, which has the highest concentration among the BTEX compounds, was found to be 12.86 μg/m3 to 91.41 μg/m3 during spring congestion time and 7.10 μg/m3 to 39.52 μg/m3 during non-congestion time. During the summer congestion time, the concentration was 6.68 μg/m3 to 249.48 μg/m3 and 13.23 μg/m3 to 214.5 μg/m3 during the non-congestion time. The concentration of benzene was mostly less than 5 μg/m3 in transportation. Particularly in the case of toluene, the concentration is significantly higher than that of other VOCs. Accordingly, further study of toluene exposure hazards will be needed. Five percent of the surveyed TVOC concentrations exceeded the recommended indoor air quality standard of 500 μg/m3, and all 13 cases representing this percentage were found in the subway. In addition, nine of the 13 cases that exceeded the recommended standard were measured during congestion time. Therefore, VOCs in public transportation vehicles during congestion time need to be managed.
In this study, the effect of improving indoor air quality according to the installation of plants was evaluated in classrooms where students spend much time. The purpose was to prepare sustainable and eco-friendly measures to improve the indoor air quality of school classrooms. A middle school in Bucheon was selected as an experiment subject, and IAQ monitoring equipment based on IoT was installed to monitor indoor air quality. After measuring the basic background concentration, plants and air purifiers were installed and the effects of improving indoor air quality using plants and air purifiers were evaluated based on the collected big data. As a result of evaluating the effects of indoor air quality improvement on the installation of plants and air purifiers, the reduction rates of PM10 and PM2.5 in descending order were plant- and air purifier- installed classes, air purifier-installed classes, and plant-installed classes. CO2 levels were reduced in the classrooms with only plants, and increased in two classrooms with air purifiers. The increase in CO2 concentration in the classrooms with plants and air purifiers was lower than in those with only air purifiers.
The purpose of this study was to evaluate indoor air pollutants of children’s facilities in libraries. The indoor pollutants, which were managed under the “Indoor Air Quality Control Standards” and “Environmental Safety Standards for Children’s Activity Zones,” were measured within five months. The new environmental pollutants such as phthalates and pesticides were also measured. The pollutant-measuring device was installed in children’s spaces in libraries and children’s libraries of the metropols. The result of investigating indoor pollutants showed that the concentration of fungus and floating bacteria had low distributions due to the use of air purifiers in all libraries. The concentration of HCHO and TVOCs was also measured lower than the environmental standards in well-ventilated libraries. On the other hand, phthalates and pesticides were detected in all libraries. In the case of heavy metals, they were mainly found in the finishing materials of the library walls and floors. As a result, indoor pollutants are managed under court receivership. On the other hand, phthalates and pesticides, which are not regulated by environmental standards should be managed because they were detected in all libraries.
The purpose of this study is to provision the standard method for ensuring the reliability of measuring indoor air quality in public transportation. The objective is to determine the difference in the measured concentration values according to various conditions. These variables include measurement conditions, measurement equipment, measurement points, and measurement time. The value differences are determined by measuring the PM10 and CO2 concentration of subways, and express buses and trains, which are targets of indoor air quality management. The concentration of CO2 was measured by the NDIR method and that of PM10 was measured by the gravimetric method and light-scattering method. Statistically, the results of the concentration comparison according to the measurement points of the public transportation modes were not significantly different (p > 0.05), and it is deemed that the concentration is not affected by the measurement points. In terms of the concentration analysis results according to the measurement method, there was a difference of the concentration between the gravimetric and light scattering method. In the case of the light scattering method, the concentration differed depending on whether it was corrected with standard particles in the laboratory environment.
This study investigated the indoor air quality conditions of public transportation according to the changing of seasons and different times of the day. We measured the concentration of PM10 and CO2, which are substances subject to control measures and limits established by Ministry of Environment for public transportation, and compared actual levels whit the legal standard. Public transportation was classified as subway lines (form 1 to 4), trains (KTX, ITX) and buses. The PM10 concentration was measured as being high during peak hours in winter compared to that in summer. On the other hand, the PM10 concentration in trains and buses was shown to be low. The CO2 concentration in public transportation was recorded as being higher than the legal standard. PM10 concentration was affected by the inflow of outdoor air, and CO2 concentration was influenced by the number of people in a particular space or environment. This survey focused on the indoor air quality of public transportation. The basic data could prove useful in formulating policies to promote and maintain good indoor air quality with regard to public transportation.
In this study, we measured the concentration of total volatile organic compounds (TVOCs) in four different seasons from 2016 to 2017 in order to determine seasonal variation of indoor air quality in relation to public transportation modes (subways, trains, and express buses). The measurement was carried out both during rush hour when traffic was congested as well as during non-rush hour when traffic was not congested. Effects by season, degree of congestion, and characteristics of public transportation were analyzed on the basis of 295 items of data during the periods of congestion and 295 items of data during the periods of non-congestion. The average TVOCs concentration in winter was the highest with 226.4 μg/m 3 . The average TVOCs concentration on an express bus was the highest with a seasonal average of 142.3 μg/m 3 . The TVOCs concentration in the period of congested traffic was higher than in the period of non-congested traffic for all public transportation modes. For the average TVOCs concentration by season and transportation, there was no data that exceeded the guidelines regarding maintaining indoor air quality. However, 2.5% of all sample measured data (TVOCs) exceeded the guidelines regarding maintaining indoor air quality. Therefore, the continuous monitoring of public transport vehicles is required.
In this study, the condition of the hazardous materials in the bus was monitored according to the ventilation mode of the air conditioning system during bus service. The bus was surveyed using the indoor air quality measurement method of public transportation vehicles within one year of delivery. We evaluate the CO2 and PM10, which are the controlled parameters in buses by the Ministry of Environment, and VOCs and HCHO, the non-controlled parameters. The PM10 concentration increased due to outdoor air intake; however the CO2 concentration was found to decrease. In addition, the concentration of VOCs and HCHO was found to decrease due to the forced ventilation system and the outdoor air intake. These results show that the concentration of the other materials except PM10 can be changed due to the outside air concentration and forced ventilation system. Therefore, through indoor air quality characteristics of the bus according to air condition system are intended to be used as the basis of an operation manual.
This study investigates the indoor air quality conditions of the total of 52 buses depend on seasons, time and others. We evaluated the CO₂and PM10, the controlled parameters in express buses by Ministry of Environment and VOCs and HCHO, the non-controlled parameters. The CO₂concentration during peak commute times was 38.5% in summer and 15.4% in autumn, which are higher than the normal. But, PM10 concentration was influenced by the outside air not number of passengers. The concentration of VOCs were not related with other parameters such as number of passengers, seasons, and driving time. And then, the formaldehyde concentration was not related with seasons as it showed little difference between summer and autumn.
In order to protect the health of students and to prevent environmental harm, the School Health Law has been enacted and enforced. In the current “School Health Law Enforcement Rule”, school facilities, such as student desks and chairs, are required to use a small amount of formaldehyde emission values. In this study, an analysis was conducted with the purpose of using the basic data for the adjustment of the present emission standard. The formaldehyde exposure trend in the classroom was evaluated by examining the newly purchased student desks and chairs. As a result of measuring the compound levels in ten schools, the new student desks and chairs seemed to have contributed little to indoor formaldehyde levels. Only one classroom out of ten schools exceeded the threshold of 100 μg/m³ in Class 2 (without new desks and chairs) [(2)103.7 μg/m³]. A measurement of the classrooms exposed to formaldehyde for more than 10 years did not exceed the standard value. It is also very likely to be a source of contamination due to the recent construction (within 6 months) of indoor building materials, which was the dominant feature of the nine new schools. Although the study comprised a limited measurement, the appraisal results are suitable for HCHO emission.
The purpose of this study is to develop correction formulas using the results of measurement by PMS 103, which is a weight method measuring device, and by Dusttrak (TSI, USA), DustMate (Turnkey Instrument Ltd., UK), and LD-5 (SIBATA, Japan), which are light scattering measuring devices. The objective is to evaluate and identify new standards (to develop a proposal) in order to complement the limitations of the existing measurement methods of public transportation vehicle indoor air quality by utilizing the three nephelometer type measuring devices. In the case of non-rush hours, the PMS values were estimated using an estimation regression equation. Statistically, the PMS values that were actually measured were not significantly different (p-value=0.4375, 0.4375, 1.000). With respect to the agreement between the two values, ICC was 0.99 in the case of the estimation regression equation using LD-5 values, 0.97 in the case of the estimation regression equation using Dusttrak values, and 0.84 in the case of the estimation regression equation using DustMate values to allow for the identification of agreement at greater levels. In the case of rush hours, the PMS values were estimated using an estimation regression equation. Statistically, the PMS values that were actually measured were not significantly different (p-value=0.3125, 0.6250, 0.8125). With respect to the agreement between the two values, ICC was 0.92 in the case of the estimation regression equation using LD-5 values, 0.91 in the case of the estimation regression equation using Dusttrak values, and 0.89 in the case of the estimation regression equation using DustMate values to allow for the identification of agreement at greater levels.
During periods where a fine dust watch was announced, we measured particulate matter by the light scattering method and the gravimetric method in accordance with the application of an air cleaner in 3 homes. The first investigation showed a lower indoor particulate matter 2.5 (PM2.5) concentration distribution than normal when there was a fine dust warning. Also, it was found that the result of the second research was similar to the first research, and was the effect of an air cleaner. The result of a comparison of black carbon (BC) concentration in accordance with an air cleaner at one room showed a lower concentration distribution than normal, as in the first and the second research when there was a fine dust warning. PM2.5 risk reduction effect showed 9.09E-5 (light scattering method) ~ 9.37E-5 (Gravimetric method) and 1.71E-4 (Light scattering method) ~ 1.76E-4 (Gravimetric method). Therefore, it was found that when there was a fine dust watch without ventilation, if air cleaner with the proper capacity is used and the influx of outside air reduced, the harmful effects of the fine dust can be lessened.
This study was conducted to evaluate the quality of indoor air and health-related parameters (allergic rhinoconjunctivitis) of subject of study (control group and sensitive group) in two schools. The schools were categorized into two groups of newly-built school and the school older than 5 years. Removal of indoor pollutant was investigated according to volume rates (0%, 1.5%, 3%) of indoor plants inside 3 classrooms respectively. The chemicals of indoor environmental research were PM10, Volatile organic compounds (toluene and benzene), formaldehyde, temperature and humidity. ARIA (Allergic rhinitis impacts on Asthma) test was used to assess health effect for 151 students. Also, The variation of SBS symptoms for students in classroom was measured by intervention. With increasing volume ratio of classrooms, there were positive and significant results between the indoor pollutant and student's health score. Students showed improvement health score during the period of putting indoor plants, which was facilitated by the placement of indoor plants at newly-built school classroom of indoor plants volume ratio 3%. From the results above, it could be tentatively effective newly-built school classroom of indoor plants volume ratio 3% improve indoor air quality and student's health score.
An elementary school is an important public place for children and it is where they spend most of their days. Ten elementary schools of environmental pollutants were measured in the classroom, playground and school zones (June 19 ~ Nov 1, 2012). Dust measurements of some schools were more indoor air. Measurements of black carbon concentrations were higher overall school zones. Also, in the case of formaldehyde, benzene and some environmental standards were exceeded. In the case of outdoor pollutants not statistically significant, but in some cars and vans that were correlated with pollutants. Thus, strategies and actions are necessary that will protect the health of children in schools from environmental pollutants.
The objective of the present study was to estimate the health risk level for children exposed to phthalate and identify the pathways including indoor floor dust, surface wipe and hand wipe in elementary-schools and institutes. The samples of indoor place were collected at children's facilities (50 elementary-schools and 46 academies) in summer (Aug ~ Sept, 2008), winter (Dec 2008 ~ Feb, 2009) and Spring (Mar ~ Apr, 2009) periods. Hazard Index (HI) were estimated for the non-carcinogens and the examined phthalate were diethylhexyl phthalate (DEHP), dibutyl-n-butyl phthalate (DnBP), butylbenzyl phthalate (BBzP). Risk analysis indicates that did not exceed 0.01 (HI) for all subjects in all facilities it's 50th % and 95th % value. For DEHP, DnBP and BBzP their detection rates through multi-pathways were high and their risk based on health risk assessment was also observed to be acceptable.
The aim of this study was to calculate the health risks which children were exposed to trace metals through several pathways including air, floor dust, wipe and hand wipes in elementary-schools and academies. The samples were collected at children's facilities (50 elementary-schools and 46 academies) in summer (Aug ~ Sept, 2008), winter (Dec 2008 ~ Feb, 2009) and Spring (Mar ~ Apr, 2009) periods. The lifetime Excess Cancer Risks (ECRs) were estimated for carcinogen trace elements such as As, Cd, and Cr. For carcinogens, the Excess Cancer Risk (ECR) was calculated by considering the process of deciding Cancer Potency Factor (CPF) and Age Dependent Adjust Factor (ADAF) of the data of adults. Hazard Quotients (HQs) were estimated for the non-carcinogens trace metals like Cd, Cr, Hg and Pb. The average ECRs for young children were 1×10-9~1×10-8 (50%th percentile) level in all facilities. Non-carcinogens did not exceed 0.1 for all subjects in all facilities. For trace metals their risk based on health risk assessment was also observed to be acceptable.
The purpose of this study was to investigate the health risk and management of childhood exposure to indoor aldehydes in elementary-schools and academies. The samples were collected at children's facilities (50 elementary-schools and 46 academies) in summer (Aug ~ Sept, 2008), winter (Dec 2008 ~ Feb, 2009) and Spring (Mar ~ Apr, 2009) periods. The overall mean concentration of formaldehyde was 68.3 ㎍ /m3 and 27.2% of exceeded the 100 ㎍/m3 by the school health guideline. The concentration ratio of Indoor air and outdoor air (I/O) of aldehydes exceeds 1.0. The level of indoor air contamination did appear to be high, and 24.6% of the academies evaluated had exceeded the formaldehyde level specified by the public health act (120㎍ /m3). We estimated the lifetime excess cancer risks (ECRs) of formaldehyde, and the hazard quotients (HQs) of non-carcinogens (acetaldehyde and benzaldehyde). In addition, for carcinogens, the excess cancer risk (ECR) was calculated by considering the process of deciding cancer potency factor (CPF) and age dependent adjust Factor (ADAF) of the data of adults. The average ECRs of formaldehyde for young children were 1×10-6~1×10-5 level in all facilities. HQs of formaldehyde did exceed 0.1 for all subjects in elementary school.
This study was to assess the lifetime cancer and non-cancer risk on exposure to volatile organic compounds This study was assessed the lifetime cancer and non-cancer risk of volatile organic compounds (VOCs) exposure in young children at elementary-schools and academies in Korea. The samples were collected at children's facilities (50 elementary-schools and 42 academies) in summer (Aug ~ Sept, 2008), winter (Dec 2008 ~ Feb, 2009) and Spring (Mar ~ Apr, 2009) periods, and analyzed by GC-MSD. We estimated the lifetime excess cancer risks (ECRs) of benzene and the hazard quotients (HQs) of non-carcinogens toluene, ethylbenzene, xylene and styrene. In addition, for carcinogens, the excess cancer risk (ECR) was calculated by considering the process of deciding cancer potency factor (CPF) and age dependent adjust Factor (ADAF) from the data in adults. The average ECRs of benzene for young children were 1×10-7~1×10-9 level in all facilities. HQs of four non-carcinogens did not exceed 1.0 for all subjects in all facilities.
This study was to assess the lifetime cancer and non-cancer risk on exposure to volatile organic compounds (VOCs) and formaldehyde of worker and user at public facilities in Korea. We measured the concentrations of formaldehyde and VOCs in indoor air at 160 public buildings that 5 kinds of public facilities (30 hotel, 30 fitness center, 25 gosiwon, 30 reading-room and 45 video-room) all over the country. There were estimated the human exposure dose and risks with averages of the using-time and frequency for facility users and office workers, respectively. Carcinogens (benzene and formaldehyde) were estimated the lifetime excess cancer risks (ECRs). Non-carcinogens (toluene, ethylbenzene, xylene, and styrene) were estimated the hazard quotients (HQs). HQs of four non-carcinogens did not exceed 1.0 for all subjects in all facilities. Higher HQs of toluene were observed at the reading-room. The average ECRs of formaldehyde and benzene for facility worker and user were 1×10-4~1×10-6 level in all facilities. The estimated ECRs for reading-room were the highest and the fitness center and gosiwon were the next higher facilities. Because lifetime ECRs of carcinogens exceeded 1×10-4 for facility worker in the most facilities, risk management of formaldehyde and benzene in the facilities was necessary. IAQ guidelines should be determined strictly to prevent occurrence of disease caused by poor IAQ beforehand.
This study assessed the health risk of trace elements in indoor children-facilities by multi-pathway measurements (Air, Dust, Wipe, Hand washing). The samples of indoor place were collected at various children's facilities (40 day-care houses, 42 child-care centers, 44 kindergartens, and 42 indoor playgrounds) in summer (Jul~Sep, 2007) and winter (Jan~Feb, 2008) periods, and analyzed by ICP-MS. The lifetime Excess Cancer Risks (ECRs) were estimated for carcinogen trace elements such as As, Cd, Cr and Ni. For carcinogens, the Excess Cancer Risk (ECR) was calculated by considering the process of deciding Cancer Potency Factor (CPF) and Age Dependent Adjust Factor (ADAF) of the data of adults. Both Hazard Quotients (HQs) and Hazard Index (HI) were estimated for the non-carcinogens and children sensitivity trace elements like Cd, Cu, and Cr. The average ECRs for young children were 1×10-10~1×10-6 (50%th percentile) level in all facilities. Non-carcinogens and Children's sensitivity materials did not exceed 1.0 (HQs, HI) for all subjects in all facilities. For trace elements their detection rates through multi-pathways were not high and their risk based on health risk assessment was also observed to be acceptable. In addition, through education on the risk of multi-pathway exposure of trace elements for managers of facilities as well as for users the risk control of exposure of children.