In this study, the effect of improving indoor air quality according to the installation of plants was evaluated in classrooms where students spend much time. The purpose was to prepare sustainable and eco-friendly measures to improve the indoor air quality of school classrooms. A middle school in Bucheon was selected as an experiment subject, and IAQ monitoring equipment based on IoT was installed to monitor indoor air quality. After measuring the basic background concentration, plants and air purifiers were installed and the effects of improving indoor air quality using plants and air purifiers were evaluated based on the collected big data. As a result of evaluating the effects of indoor air quality improvement on the installation of plants and air purifiers, the reduction rates of PM10 and PM2.5 in descending order were plant- and air purifier- installed classes, air purifier-installed classes, and plant-installed classes. CO2 levels were reduced in the classrooms with only plants, and increased in two classrooms with air purifiers. The increase in CO2 concentration in the classrooms with plants and air purifiers was lower than in those with only air purifiers.
The purpose of this study is to provision the standard method for ensuring the reliability of measuring indoor air quality in public transportation. The objective is to determine the difference in the measured concentration values according to various conditions. These variables include measurement conditions, measurement equipment, measurement points, and measurement time. The value differences are determined by measuring the PM10 and CO2 concentration of subways, and express buses and trains, which are targets of indoor air quality management. The concentration of CO2 was measured by the NDIR method and that of PM10 was measured by the gravimetric method and light-scattering method. Statistically, the results of the concentration comparison according to the measurement points of the public transportation modes were not significantly different (p > 0.05), and it is deemed that the concentration is not affected by the measurement points. In terms of the concentration analysis results according to the measurement method, there was a difference of the concentration between the gravimetric and light scattering method. In the case of the light scattering method, the concentration differed depending on whether it was corrected with standard particles in the laboratory environment.