검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2023.05 구독 인증기관·개인회원 무료
        Solubility and species distributions of radionuclides in domestic groundwater conditions are required for the safety assessment of deep underground disposal system of spent nuclear fuel (SNF). Minor actinides including Am contribute significant extents to the long-term radiotoxicity of SNF. In this study, the solubility of Am was evaluated in synthetic groundwater (Syn-DB3), which were simulated for the groundwater of the DB3 site in the KAERI Underground Research Tunnel (KURT). Geochemical modeling was performed based on the ThermoChimie_11a (2022) thermochemical database from Andra to estimate the solubility and species distributions of Am in the Syn-DB3 condition. Dissolved Am concentrations in the Syn-DB3 were experimentally measured under oversaturation conditions. Am(III) stock solution in perchlorate media was sequentially diluted in Syn-DB3 to prepare 8 μM Am(III) in Syn-DB3. The pH of the solutions was adjusted to be in the range of 6.4–10.5. A portion of the samples was transferred to quartz cells for UV-Vis absorption and time-resolved laser fluorescence spectroscopy studies and the rest were stored in centrifuge tubes. The absorption spectra of the samples were monitored over 70 days and the results suggest that Am colloidal particles were formed initially in all the samples and precipitated rapidly within two days. Over the experimental period of 236 days, small volume (10 μL) of the samples in the centrifuge tubes were periodically withdrawn after centrifugation (18000 rpm, 1 hr) for the liquid scintillation counting to measure the concentrations of Am dissolved in Syn-DB3. In the end of the experiments, pH of the samples was checked again and the final dissolved Am concentrations were determined after ultrafiltration (10 kDa) to exclude the contribution of colloidal particles. In the pH range of 8-9, which is relevant to the KURT-DB3 groundwater condition, the measured dissolved Am(III) concentrations were converged to around 10-8 M. These values are higher than the solubility of AmCO3OH:0.5H2O(s), but lower than that of AmCO3OH(am). There was no indication of transformation of the amorphous phase to the crystalline phase in our observation time window.
        2.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study is to develop and evaluate amorphous spray-dried microparticles (SDM) containing levosulpiride to increase its solubility. SDM are prepared via solvent evaporation using polyvinylpyrrolidone (PVP) as the water-soluble polymer and Cremophor RH40 as the surfactant. The SDM is prepared by varying the amounts of PVP and Cremophor RH40, and its physicochemical properties, solubility, and dissolution are confirmed. All levosulpiride-loaded SDMs converted the crystalline drug into an amorphous form, significantly improving drug solubility and dissolution compared with the drug alone. SDM consisting of drug/PVP/Cremophor RH40 in a weight ratio of 5:10:3, with increased solubility (720 ± 36 vs. 1822 ± 51 μg/mL) and dissolution rate (10.3 ± 2.2 vs. 92.6 ± 6.0%) compared with drug alone, shows potential as a commercial drug for improved oral bioavailability of levosulpiride.
        4,000원
        3.
        2022.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The solubility and species distribution of radionuclides in groundwater are essential data for the safety assessment of deep underground spent nuclear fuel (SNF) disposal systems. Americium is a major radionuclide responsible for the long-term radiotoxicity of SNF. In this study, the solubility of americium compounds was evaluated in synthetic groundwater (Syn- DB3), simulating groundwater from the DB3 site of the KAERI Underground Research Tunnel. Geochemical modeling was performed using the ThermoChimie_11a thermochemical database. Concentration of dissolved Am(III) in Syn-DB3 in the pH range of 6.4–10.5 was experimentally measured under over-saturation conditions by liquid scintillation counting over 70 d. The absorption spectra recorded for the same period suggest that Am(III) colloidal particles formed initially followed by rapid precipitation within 2 d. In the pH range of 7.5–10.5, the concentration of dissolved Am(III) converged to approximately 2×10−7 M over 70 d, which is comparable to that of the amorphous AmCO3OH(am) according to the modeling results. As the samples were aged for 70 d, a slow equilibrium process occurred between the solid and solution phases. There was no indication of transformation of the amorphous phase into the crystalline phase during the observation period.
        4,300원
        4.
        2022.10 구독 인증기관·개인회원 무료
        Radioactive contamination of soil on the site of a nuclear facility has a characteristic that radioactive nuclides are adsorbed into the pores between soil particles, making it quite difficult to decontaminate. For this reason, research on the development of various decontamination processes is being actively conducted. In this study, among various decontamination studies, a soil decontamination process using supercritical carbon dioxide was presented. The decontamination process uses supercritical carbon dioxide as the main solvent, which has a higher penetration power than other materials. Therefore, the process consists of the process of desorbing and extracting the target radionuclides between particles of soil. However, since nuclides exist as ions in the soil, polar chelating ligand material was introduced as an additive to nonpolar supercritical carbon dioxide for smooth chemical reactions in the soil. Thereafter, from the viewpoint of improving process continuity and efficiency, an alcohol material was introduced as an auxiliary solvent for liquefaction of chelating ligand in a solid state. Through prior research on the selection of a solvent for liquefaction of chelating ligand, ethanol and 2-propanol were finally selected based on whether the chelating ligand was dissolved. However, if the auxiliary solvent in which the chelating ligand is dissolved is to be combined with radionuclides in the soil, it must first be well dissolved in supercritical carbon dioxide, the main solvent. Therefore, in this study, the solubility of ethanol and 2-propanol in supercritical carbon dioxide was measured and the suitability was evaluated. The temperature conditions were carried out at 40°C, the same as the previously designed decontamination process, and the measurement was conducted by adjusting the pressure and volume through a syringe pump and a variable volume device. In addition, solubility was measured based on the observation of the ‘cloud point’ in which the image becomes cloudy and then bright. As a result of the experiment, several solubility points were measured at a pressure of 150 bar or less. If the flow rate ratio of supercritical carbon dioxide and auxiliary solvent derived from the results is applied to the soil decontamination process, it is expected that the process efficiency will increase in the future.
        6.
        2004.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the FMAS system the effect of iron on alumina solubility in orthopyroxene has been determined by experiments with crystalline starting mixtures of garnet and orthopyroxene of known initial compositions at 20 kb, 975˚C and 25 kb, 1,200˚C. These data have been modeled to develop a thermodynamic method for the calculation of Al2O3 in orthopyroxene as a function of P, T and composition. The direct application of the alumina solubility data in the MAS system to natural assemblages could lead to significant overestimation of pressure, probably by about 5kb for the relatively common garnet-lherzolites with abot 25 mol per cent Ca + Fe2+ in garnet and about 1 wt. per cent Al2O3 in orthopyroxene since the effect of Fe is similar to that of Ca and Cr3+in reducing the alumina solubility in orthopyroxene in equilibrum with garnet relative to that in the MAS system.
        4,000원