검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 9

        1.
        2023.11 구독 인증기관·개인회원 무료
        Recently, the status of North Korea’s denuclearization has become an international issue, and there are also indications of potential nuclear proliferation among neighboring countries. So, the need for establishment of nuclear activity verification technology and strategy is growing. In terms of ensuring verification completeness, sample collection-based analysis is essential. The concepts of Chain of Custody (CoC) and Continuity of Knowledge (CoK) can be defined in the process of sample extraction as follows: CoC is interpreted as the ‘system for managing the flow of information subjected by the examinee’, and CoK is interpreted as the ‘Continuity of information collection through CoC subjected by the inspector’. In the case of sample collection process in unreported areas for nuclear activity verification, there are additional risks such as worker exposure/kidnapping or sample theft/tampering. Therefore, the introduction of additional devices might be required to maintain CoC and CoK in the unreported area. In this study, an Environmental Geometrical Data Transfer (EGDT) was developed to ensure the safety of workers and the CoC/CoK of the samples during the collection process. This device was designed for achieving both mobility and rechargeability. It is categorized into two modes based on its intended users: sample mode and worker mode. Through the sensors, which is positioned in the rear part of device, such as radiation, gyroscope, light, temperature, humidity and proximity sensors, it can be easily achievable various environmental information in real-time. Additionally, GPS information can also be received, allowing for responsiveness to various hazardous scenarios. Moreover, the OLED display positioned on the front gives us for checking device information such as the current status of the device such as the battery level, the connectivity of wifi, and etc. Finally, an alarm function was integrated to enable rapid awareness during emergency situations. These functions can be updated and modified through Arduino-based firmware, and both the device and the information collected through it can be remotely controlled via custom software. Based on the presented design conditions, a prototype was developed and field assessments were conducted, yielding results within an acceptable margin of error for various scenarios. Through the application of the EGDT developed in this study to the sample collection process for nuclear activity verification purposes, it is expected to achieve a stable maintenance of CoC/CoK through more accurate information transmission and reception.
        2.
        2022.10 구독 인증기관·개인회원 무료
        Radioactive contamination of soil on the site of a nuclear facility has a characteristic that radioactive nuclides are adsorbed into the pores between soil particles, making it quite difficult to decontaminate. For this reason, research on the development of various decontamination processes is being actively conducted. In this study, among various decontamination studies, a soil decontamination process using supercritical carbon dioxide was presented. The decontamination process uses supercritical carbon dioxide as the main solvent, which has a higher penetration power than other materials. Therefore, the process consists of the process of desorbing and extracting the target radionuclides between particles of soil. However, since nuclides exist as ions in the soil, polar chelating ligand material was introduced as an additive to nonpolar supercritical carbon dioxide for smooth chemical reactions in the soil. Thereafter, from the viewpoint of improving process continuity and efficiency, an alcohol material was introduced as an auxiliary solvent for liquefaction of chelating ligand in a solid state. Through prior research on the selection of a solvent for liquefaction of chelating ligand, ethanol and 2-propanol were finally selected based on whether the chelating ligand was dissolved. However, if the auxiliary solvent in which the chelating ligand is dissolved is to be combined with radionuclides in the soil, it must first be well dissolved in supercritical carbon dioxide, the main solvent. Therefore, in this study, the solubility of ethanol and 2-propanol in supercritical carbon dioxide was measured and the suitability was evaluated. The temperature conditions were carried out at 40°C, the same as the previously designed decontamination process, and the measurement was conducted by adjusting the pressure and volume through a syringe pump and a variable volume device. In addition, solubility was measured based on the observation of the ‘cloud point’ in which the image becomes cloudy and then bright. As a result of the experiment, several solubility points were measured at a pressure of 150 bar or less. If the flow rate ratio of supercritical carbon dioxide and auxiliary solvent derived from the results is applied to the soil decontamination process, it is expected that the process efficiency will increase in the future.
        3.
        2022.10 구독 인증기관·개인회원 무료
        Korea faces decommissioning the nation’s first commercial nuclear power plant, the Kori-1 and Wolseong-1 reactors. In addition, other nuclear power plants that will continue to operate will also face decommissioning over time, so it is essential to develop independent nuclear facility decommissioning and site remediation technologies. Among these various technologies, soil decontamination is an essential not only in the site remediation after the decommissioning of the highly radioactive nuclear facility, but also in the case of site contamination caused by an accident during operation of the nuclear facility. But the soil, which is a porous material, is difficult to decontaminate because radionuclides are adsorbed into the pores. Therefore, with the current decontamination technology, it is difficult to achieve the two goals of high decontamination efficiency and secondary waste reduction at the same time. In this study, a soil decontamination process with supercritical carbon dioxide as the main solvent was presented, which has better permeability than other solvents and is easy to maintain critical conditions and change physical properties. Through prior research, a polar chelating ligand was introduced as an additive for smooth extraction reaction between radionuclides present as ions in soil and nonpolar supercritical carbon dioxide. In addition, for the purpose of continuity of the process, a candidate group of auxiliary solvents capable of liquefying the ligand was selected. In this research evaluated the decontamination efficiency by adding the selected auxiliary solvent candidates to the supercritical carbon dioxide decontamination process, and ethanol with the best characteristics was selected as the final auxiliary solvent. In addition, based on the decontamination effect under a single condition of the auxiliary solvent found in the Blank Test process, the possibility of a pre-treatment leaching process using alcohol was tested in addition to the decontamination process using supercritical carbon dioxide. Finally, in addition to the existing Cs and Sr, the possibility of decontamination process was tested by adding U nuclides as a source of contamination. As a result of this research, it is expected that by minimizing secondary waste after the process, waste treatment cost could be reduced and the environmental aspect could be contributed, and a virtuous cycle structure could be established through reuse of the separated carbon dioxide solvent. In addition, adding its own extraction capacity of ethanol used for liquefaction of solid-phase ligands is expected to maximize decontamination efficiency in the process of increasing the size of the process in the future.
        4.
        2022.05 구독 인증기관·개인회원 무료
        As the number of nuclear power plants whose design life has expired worldwide increases, the attempts are continuing to complete the project of nuclear back-end cycle, the last task of the nuclear industry. Decontamination is essential in the process of dismantling nuclear facilities and restoration sites to remove all or some of the regulatory controls from an authorized facility. Among radioactive wastes, particularly contaminated soil is characterized by difficult physical decontamination because radionuclides are adsorbed between soil particles, that is, pores. Therefore, chemical decontamination is mainly used, which has the disadvantage of generating a lot of secondary waste. In order to overcome these disadvantages, an eco-friendly soil decontamination process is being developed that can drastically reduce the amount of secondary waste generated by using supercritical carbon dioxide. Supercritical carbon dioxide can easily control its physical properties and has both liquid and gas properties. However, since supercritical carbon dioxide is non-polar, additives are needed to extract polar metal ions, which are the goal of decontamination. Therefore, ligand with both CO2-philic and metal binding regions was selected. In previous studies, the decontamination efficiency of soil was evaluated by reacting contaminated soil with solid ligand and co-ligand at once. When solid ligands were used, the decontamination efficiency was lower than expected, which was expected because chemical substances were somewhat difficult to exchange in the closed process. In this study, in order to increase the efficiency of the decontamination process, the need for a process of liquefying ligand and continuously flowing it has been raised. Therefore, a co-solvent that dissolves well at the same time in SCCO2, ligand, and co-ligand was selected. In the selection process, a total of eight substances were selected by dividing into six polar substances and two non-polar substances through various criteria such as economic feasibility, eco-friendliness, and harmlessness. Thereafter, ethanol was finally selected through solubility evaluation for SCCO2 and additives. It is expected that a more effective decontamination process can be constructed when the additive is liquefied using a solvent selected from the results of this study.
        5.
        2022.05 구독 인증기관·개인회원 무료
        Today, the domestic and international nuclear power industry is experiencing an acceleration in the scale of the nuclear facility decommissioning market. This phenomenon is also due to policy changes in some countries, but the main reason is the rapid increase in the proportion of old nuclear power plants in the world, mainly in countries that introduced nuclear power plants in the early stages. Decontamination is essential in the process of decommissioning nuclear facilities. Among various decontamination targets, radionuclides are adsorbed between pores in the soil, making physical decontamination quite difficult. Therefore, various chemical decontamination technologies are used for contaminated soil decontamination, and the current decontamination technologies have a problem of generating a large amount of secondary wastes. In this study, soil decontamination technology using supercritical carbon dioxide is proposed and aimed to make it into a process. This technology applies cleaning technology using supercritical fluids to decontamination of radioactive waste, it has important technical characteristics that do not fundamentally generate secondary wastes during radioactive waste treatment. Supercritical carbon dioxide is harmless and is a very useful fluid with advantages such as high dissolution, high diffusion coefficient, and low surface tension. However, since carbon dioxide, a non-polar material, shows limitations in removing polar and ionic metal wastes, a chelating ligand was introduced as an additive. In this study, a ligand material that can be dissolved in supercritical carbon dioxide and has high binding ability with polar metal ions was selected. In addition, in order to increase the decontamination efficiency, an experiment was conducted by adding an auxiliary ligand material and ultrasonic waves as additives. In this study, the possibility of liquefaction of chelating ligands and auxiliary ligands was tested for process continuity and efficiency, and the decontamination efficiency was compared by applying it to the actual soil classified according to the particle size. The decontamination efficiency was derived by measuring the concentration of target nuclides in the soil before and after decontamination through ICP-MS. As a result of the experiment, it was confirmed that the liquefaction of the additive had a positive effect on the decontamination efficiency, and a difference in the decontamination efficiency was confirmed according to the actual particle size of the soil. Through this study, it is expected that economic value can be created in addition to the social value of the technology by ensuring the continuity of the decontamination process using supercritical carbon dioxide.