More Roller-compacted concrete (RCC) is a dry concrete consisted of same materials as conventional concrete with different proportioning which requires compaction effort in order to reach its final form. Thus, both hydration and aggregate interlock play important roles in its strength augmentation. Flexural strength, an important factor in pavement design and fatigue cracking resistance, can be difficult to be obtained at in-situ and may be subjected to high variability. Even though its compressive strength is relatively high compared to conventional concrete with similar binder content, the relationship between compressive strength and flexural or tensile strength were not well defined. The goal of this research is to compare the relationship between compressive strength and flexural strength as well as the relationship between compressive strength and splitting tensile strength of RCC with those of conventional concrete using various equations suggested in other researches and also to determine new regression equations for estimating RCC’s flexural and splitting tensile strength. The positive result of RCC’s flexural strength was found; it was higher than majority of predicted values from conventional concrete for the same compressive strength. In contrast, RCC’s splitting tensile strength was relatively low compared to that of conventional concrete for the same compressive strength. Power equations were learned to be suitable for relationship between compressive and flexural strengths as well as relationship between compressive and splitting tensile strengths.
This paper addresses the tensile strength of high performance concrete with fly-ash, silica fume. Test variables of this study is replacement ratio of admixture. Test results showed that 7 days tensile strength of specimen SF5 is higher than that of specimen FA25SF5. However, 28 days tensile strength of specimen SF5 and FA25SF5 had similar value.