검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2016.06 구독 인증기관·개인회원 무료
        Roller-compacted concrete or RCC is a dry concrete that requires compaction in order to reach its final form. Its consistency is usually overlooked due to its inconsistency and lack of subjective nature. To work with this concrete, however, appropriate consistency is required for supporting the compacting machine and minimizing compaction energy. Due to transportation and compaction time, maintaining proper consistency within a period of time is also necessary. Vebe time, a represent parameter of dry concrete consistency, ranged from 30 to 75 seconds is considered appropriate for RCC in pavement application. The purpose of this study is to improve workability of this concrete which consisted of improving its consistency and maintaining it within the working time. It was confirmed that the workable time of a normal RCC is less than one hour. Moreover, it was found that Vebe time drops when water content increases and goes up when sand by aggregate ratio increases. Various admixtures were also employed in this study in order to improve the workability of this concrete. Poly Naphtalene Sulfonate superplasticizer, particularly, was found to be the most effective in term of lowering down Vebe time and maintaining it. With just 0.3% of this admixture, the working time of RCC can be extended up to four hours without affecting its compressive strength.
        2.
        2015.10 구독 인증기관·개인회원 무료
        More Roller-compacted concrete (RCC) is a dry concrete consisted of same materials as conventional concrete with different proportioning which requires compaction effort in order to reach its final form. Thus, both hydration and aggregate interlock play important roles in its strength augmentation. Flexural strength, an important factor in pavement design and fatigue cracking resistance, can be difficult to be obtained at in-situ and may be subjected to high variability. Even though its compressive strength is relatively high compared to conventional concrete with similar binder content, the relationship between compressive strength and flexural or tensile strength were not well defined. The goal of this research is to compare the relationship between compressive strength and flexural strength as well as the relationship between compressive strength and splitting tensile strength of RCC with those of conventional concrete using various equations suggested in other researches and also to determine new regression equations for estimating RCC’s flexural and splitting tensile strength. The positive result of RCC’s flexural strength was found; it was higher than majority of predicted values from conventional concrete for the same compressive strength. In contrast, RCC’s splitting tensile strength was relatively low compared to that of conventional concrete for the same compressive strength. Power equations were learned to be suitable for relationship between compressive and flexural strengths as well as relationship between compressive and splitting tensile strengths.