검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2012.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To elucidate the mechanism associated with the development of heavy precipitation system, a field experiment was carried out in Jejudo (or Jeju Island) and Marado, Korea from 22 June to 12 July 2006. The synoptic atmospheric conditions were analyzed using the National Centers for Environmental Prediction-National Center for Atmospheric Research's (NCEP/NCAR) reanalyzed data, weather maps, and sounding data. The kinematic characteristics of each precipitation system were investigated by dual Doppler radar analysis. During the field experiment, data of four precipitation events with more than 20 mm rainfall were collected. In F case (frontal precipitation), a typical Changma front was dominant and the observation field was fully saturated. However there was no convective instability near the surface. LF case (low pressure accompanied with Changma front) showed strong convective instability near the surface, while a strong convergence corresponded to the low pressure from China accompanied with Changma front. In FT case (Changma front indirectly influenced by typhoon), the presence of a convective instability indicated the transport of near surface, strong additional moisture from the typhoon 'EWINIAR'. The convergence wind field was ground to be located at a low level. The convective instability was not significant in T case (precipitation of the typhoon 'EWINIAR'), since the typhoon passed through Jejudo and the Changma front was disappeared toward the northeastern region of the Korean peninsula. The kinematic (convergence and divergence) characteristics of wind fields, convective instability, and additional moisture inflow played important roles in the formation and development of heavy precipitation.
        5,200원
        2.
        2014.10 KCI 등재 서비스 종료(열람 제한)
        This study is carried out in order to bridge the gap to understand the relationships between South Asian and East Asian monsoon systems by comparing the summer (June-September) precipitation of Nepal and South Korea. Summer monsoon precipitation data from Nepal and South Korea during 30 years (1981-2010) are used in this research to investigate the association. NCEP/NCAR reanalysis data are also used to see the nature of large scale phenomena. Statistical applications are used to analyze these data. The analyzed results show that summer monsoon precipitation is higher over Nepal (1513.98 ± 159.29 mm y-1) than that of South Korea (907.80 ± 204.71 mm y-1) and the wettest period in both the countries is July. However, the coefficient of variation shows that amplitude of interannual variation of summer monsoon over South Korea (22.55%) is larger in comparison to that of Nepal (10.52%). Summer monsoon precipitation of Nepal is found to be significantly correlated to that of South Korea with a correlation coefficient of 0.52 (99% confidence level). Large-scale circulations are studied to further investigate the relationship between the two countries. wind and specific humidity at 850 hPa show a strong westerly from Arabian Sea to BOB and from BOB, wind moves towards Nepal in a northwestward direction during the positive rainfall years. In case of East Asia, strong northward displacement of wind can be observed from Pacific to South Korea and strong anticyclone over the northwestern Pacific Ocean. However, during the negative rainfall years, in the South Asian region we can find weak westerly from the Arabian Sea to BOB, wind is blowing in a southerly direction from Nepal and Bangladesh to BOB.