검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 41

        5.
        2015.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Most high energy cosmic rays (CRs) are thought to be produced by diffusive shock acceleration (DSA) in supernova remnants (SNRs) within the Galaxy. Plasma and MHD simulations have shown that the self-excitation of MHD waves and ampli cation of magnetic fields via plasma instabilities are an integral part of DSA for strong collisionless shocks. In this study we explore how plasma processes such as plasma instabilities and wave-particle interactions can affect the energy spectra of CR protons and electrons, using time-dependent DSA simulations of SNR shocks. We demonstrate that the time-dependent evolution of the shock dynamics, the self-amplified magnetic fields and Alfvenic drift govern the highest energy end of the CR energy spectra. As a result, the spectral cutoffs in nonthermal X-ray and γ-ray radiation spectra are regulated by the evolution of the highest energy particles, which are injected at the early phase of SNRs. We also nd that the maximum energy of CR protons can be boosted significantly only if the scale height of the magnetic field precursor is long enough to contain the diffusion lengths of the particles of interests. Thus, detailed understandings of nonlinear wave-particle interactions and time-dependent DSA simulations are crucial for understanding the nonthermal radiation from CR acceleration sources.
        3,000원
        6.
        2015.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We present an ongoing study of the complete sample of supernova remnants (SNRs) and candidates in the Magellanic Clouds. 108 objects in both Clouds are considered to be either SNR or reliable candidates. This represents the most complete sample of all known SNRs in any galaxy. It therefore allows us to study SNR population properties such as the age-diameter (Age-D) relation. Here, we show that this Age-D relation is strongly dependant on the local environment in which SNRs are residing.
        4,000원
        7.
        2015.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Young Galactic supernova remnants (SNRs) are where we can observe closely supernova (SN) ejecta and their interaction with the circumstellar/interstellar medium. They also provide an opportunity to explore the explosion and the final stage of the evolution of massive stars. Near-infrared (NIR) emission lines in SNRs mostly originate from shocked dense material. In shocked SN ejecta, forbidden lines from heavy ions are prominent, while in shocked circumstellar/interstellar medium, [Fe II] and H2 lines are prominent. [Fe II] lines are strong in both media, and therefore [Fe II] line images provide a good starting point for the NIR study of SNRs. There are about twenty SNRs detected in [Fe II] lines, some of which have been studied in NIR spectroscopy. We will review the NIR [Fe II] observations of SNRs and introduce our recent NIR spectroscopic study of the young core-collapse SNR Cas A where we detected strong [P II] lines.
        3,000원
        8.
        2015.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We carry out three-dimensional hydrodynamic simulations of the supernova remnants (SNRs) produced inside molecular clouds (MCs) near their surface using the HLL code (Harten et al. 1983). We explore the dynamical evolution and the X-ray morphology of SNRs after breaking through the MC surface for ranges of the explosion depths below the surface and the density ratios of the clouds to the intercloud media (ICM). We find that if an SNR breaks out through an MC surface in its Sedov stage, the outermost dense shell of the remnant is divided into several layers. The divided layers are subject to the Rayleigh-Taylor instability and fragmented. On the other hand, if an SNR breaks through an MC after the remnant enters the snowplow phase, the radiative shell is not divided to layers. We also compare the predictions of previous analytic solutions for the expansion of SNRs in stratified media with our one- dimensional simulations. Moreover, we produce synthetic X-ray surface brightness in order to research the center-bright X-ray morphology shown in thermal composite SNRs. In the late stages, a breakout SNR shows the center-bright X-ray morphology inside an MC in our results. We apply our model to the observational results of the X-ray morphology of the thermal composite SNR 3C 391.
        4,900원
        13.
        2013.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Nonthermal radiation from supernova remnants (SNRs) provides observational evidence and constraints on the diffusive shock acceleration (DSA) hypothesis for the origins of Galactic cosmic rays (CRs). Recently it has been recognized that a variety of plasma wave-particle interactions operate at astrophysical shocks and the detailed outcomes of DSA are governed by their complex and nonlinear interrelationships. Here we calculate the energy spectra of CR protons and electrons accelerated at Type Ia SNRs, using time-dependent, DSA simulations with phenomenological models for magnetic field amplification due to CR streaming instabilities, Alfv´enic drift, and free escape boundary. We show that, if scattering centers drift with the Alfv´en speed in the amplified magnetic fields, the CR energy spectrum is steepened and the acceleration efficiency is significantly reduced at strong CR modified SNR shocks. Even with fast Afv´enic drift, DSA can still be efficient enough to develop a substantial shock precursor due to CR pressure feedback and convert about 20-30% of the SN explosion energy into CRs. Since the high energy end of the CR proton spectrum is composed of the particles that are injected in the early stages, in order to predict nonthermal emissions, especially in X-ray and -ray bands, it is important to follow the time dependent evolution of the shock dynamics, CR injection process, magnetic field amplification, and particle escape. Thus it is crucial to understand the details of these plasma interactions associated with collisionless shocks in successful modeling of nonlinear DSA.
        4,800원
        15.
        2012.09 KCI 등재 구독 인증기관·개인회원 무료
        We carry out a systematic study of Galactic supernova remnants (SNRs) using the AKARI Far Infrared Surveyor (FIS) survey data. The AKARI Infrared Astronomical Satellite observed the whole sky using the four FIS bands covering 50 to 180 microns with ~1 arcmin resolution. The all-sky coverage with high-spatial resolution provides an unprecedented opportunity to study diffuse, extended far-infrared (FIR) sources such as SNRs. We have searched for FIR counterparts to all 274 known Galactic SNRs, and investigate their FIR properties of identified SNRs. We report preliminary results of the study.
        16.
        2012.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We present preliminary results of supernova remnants (SNRs) in the Large Magellanic Cloud (LMC) seen by AKARI as well as Spitzer. By examining the AKARI LMC survey and the Spitzer data, we have searched for IR counterparts to 45 known SNRs in the LMC and could identify 28 SNRs with associated IR emission. 13 SNRs among them are newly detected in IR bands. For the entire IR SNRs, we make a catalog containing general information and the AKARI and/or Spitzer fluxes. Using the catalog, their IR colors and the possible correlation of the IR fluxes with the X-ray fluxes are examined. For some interesting SNRs, we have performed NIR spectroscopy with AKARI. An aromatic feature at 3.3 μm can be identified in LMC SNR N49. We investigate the characteristics of the IR features and discuss the PAH mission mechanism in SNRs.
        3,000원
        17.
        2012.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Supernovae (SN) and supernova remnants (SNRs) play a major role in the life-cycle of interstellar dusts. Fast shock waves generated by SN explosions sweep out the interstellar space destroying dust grains and modifying their physical and chemical properties. The dense, cooling SN ejecta, on the other hand, provide an environment for dusts to condense. Recent space-infrared telescopes have revealed the hidden universe related to these fascinating microscopic processes. In this paper, I introduce the results on stardusts in young core-collapse supernova remnants obtained by AKARI. The AKARI results show diverse infrared characteristics of stardusts associated with SNRs, implying diverse physical/chemical stellar structures and circumstellar environments at the time of explosion.
        4,000원
        1 2 3