검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        2.
        2019.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We study substrate support structures and materials to improve uptime and shorten preventive maintenance cycles for chemical vapor deposition equipment. In order to improve the rolling of the substrate support, the bushing device adopts a ball transfer method in which a large ball and a small ball are mixed. When the main transfer ball of the bushing part of the substrate support contacts the substrate support, the small ball also rotates simultaneously with the rotation of the main ball, minimizing the resistance that can be generated during the vertical movement of the substrate support. As a result of the improvement, the glass substrate breakage rate is reduced by more than 90 ~ 95 %, and the equipment preventive maintenance and board support replacement cycles are extended four times or more, from once a month to more than four months, and the equipment uptime is at least 15 % improved. This study proposes an optimization method for substrate support structure and material improvement of chemical vapor deposition equipment.
        4,000원
        3.
        2018.05 구독 인증기관·개인회원 무료
        In pressure retarded osmosis (PRO) process, thin film composite (TFC) type membranes which can withstand high operating pressure are required. In this study, glass fibers (GF) are used as additive for mechanical strength enhancement of the support layer of TFC membranes. The support layers were fabricated by a phase inversion method by using the casting solution of blended GF (two different size of milled GF) with polyethersulfone (PES). The fabricated support layers were characterized by FE-SEM, FT-IR, contact angle goniometer, and universal testing machine. Lab-scale ultrafiltration experiment was carried out to measure their performance. As a result, the support layer with milled GF showed higher mechanical strength and water flux than the pure PES support layer, and the support layer with smaller size GF showed higher performance.
        5.
        1997.12 KCI 등재 서비스 종료(열람 제한)
        This paper discussed effect of the surface roughness and the hydrophobicity of support material on the microbial attachment in a rotating biological contactor. The hydrophobicity of each support material was determined by the measurement of contact angle of water and the surface roughness was measured by the surface roughness instrument. Microorganisms have well attached on the surface of more hydrophilic support material like Nylon6 than that of the hydrophobic support material like PE. When the relatively hydrophilic surface was roughen, the microbial attachment was increased but when the relatively hydrophobic surface was roughen, the attachment was slightly increased because the hydrophobicity of support material was increased by roughening the hydrophobic surface. Although both variables, the surface hydrophobicity and the surface roughness, have influenced the microbial attachment, the influence of the surface roughness overruled that of the surface hydrophobicity. Support material whose surfaces were roughened about l㎛, 6㎛ and 11㎛ were allowed for attached 3, 7 and 24hr, but the differences of maximum and minimum attachment of each material gave nearly constant values and similar trend with time.