검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2023.11 구독 인증기관·개인회원 무료
        Conducting a TSPA (Total System Performance Assessment) of the entire spent nuclear fuel disposal system, which includes thousands of disposal holes and their geological surroundings over many thousands of years, is a challenging task. Typically, the TSPA relies on significant efforts involving numerous parts and finite elements, making it computationally demanding. To streamline this process and enhance efficiency, our study introduces a surrogate model built upon the widely recognized U-network machine learning framework. This surrogate model serves as a bridge, correcting the results from a detailed numerical model with a large number of small-sized elements into a simplified one with fewer and large-sized elements. This approach will significantly cut down on computation time while preserving accuracy comparable to those achieved through the detailed numerical model.