The initial radionuclide migration quantity depends on the total amount of solubilized species. Geochemical modeling based on a thermodynamic database (TDB) has been employed to assess the solubility of radionuclides. It is necessary to evaluate whether the TDB describes the domestic repository conditions appropriately. An effective way to validate the TDB-based modeling results is through direct comparisons with experimentally measured values under the conditions of interest. Here, the solubilities of trivalent Sm, Eu, and Am were measured in synthetic KURT-DB3 groundwater (Syn- DB3) and compared with modeling results based on ThermoChimie TDB. Ln2(CO3)3·xH2O(cr) (Ln = Sm, Eu) solids were introduced into the Syn-DB3 and dissolved Sm and Eu concentrations were monitored over 223 days. X-ray diffraction analysis confirmed that the crystallinity of the solid compounds was maintained throughout the experiments. The dissolved Sm and Eu concentrations at equilibrium were close to the predicted solubilities of Sm2(CO3)3(s) and Eu2(CO3)3(s) based on the ThermoChimie TDB. The Am solubility measured under oversaturated conditions was comparable to the measured Eu concentrations, although they were measured under different experimental settings. More experimental data are needed for Am-carbonate solid systems with careful characterization of the solid phases to better evaluate Am solubility in domestic groundwater conditions.
The disposal of spent nuclear fuel (SNF) in a deep geological repository (DGR) is a widely accepted strategy for the long-term sequestration of radiotoxic SNF. Ensuring the safety of a DGR requires the prediction of various reactions and migration behaviors of radionuclides (RNs) present in SNF within its geochemical surroundings. Understanding the dissolution behaviors of mineral phases harboring these RNs is crucial, as the levels of RNs in groundwater are basically linked to the solubility of these solid phases. Accurate measurements of solubility demand the use of welldefined solid materials characterized by chemical compositions and structures. Herein, we attempted the synthesis of sklodowskite, a magnesium-uranyl (U(VI))-silicate, employing a twostep hydrothermal synthetic approach documented previously. Subsequently, we subjected this synthesized sklodowskite to various analytical techniques, including powder X-ray diffraction (pXRD), scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDX), and vibrational spectroscopies (FTIR and Raman). Based on our findings, we confidently identify the obtained mineral phase as sklodowskite (Mg[UO2SiO3OH]2·5H2O). This identification is primarily based on the similarity between its pXRD pattern and the reference XRD pattern of sklodowskite. Furthermore, the measured infrared and Raman spectra show the vibrational modes of UO2 2+ and SiO4 4- ions, particularly within the 700~1,100 cm-1 region, which support that the synthetic mineral has a characteristic layered uranyl-silicate structure of crystalline sklodowskite. Finally, we utilized synthetic minerals to estimate its solubility up to about three months in a model groundwater, where the dissolved species composition is analogous to that of granitic groundwater from the KAERI Underground Research Tunnel. In this presentation, we will present in detail the results of spectroscopic characterizations and the methodology employed to assess the solubility of the U(VI)-silicate solid phase.
Solubility and species distributions of radionuclides in domestic groundwater conditions are required for the safety assessment of deep underground disposal system of spent nuclear fuel (SNF). Minor actinides including Am contribute significant extents to the long-term radiotoxicity of SNF. In this study, the solubility of Am was evaluated in synthetic groundwater (Syn-DB3), which were simulated for the groundwater of the DB3 site in the KAERI Underground Research Tunnel (KURT). Geochemical modeling was performed based on the ThermoChimie_11a (2022) thermochemical database from Andra to estimate the solubility and species distributions of Am in the Syn-DB3 condition. Dissolved Am concentrations in the Syn-DB3 were experimentally measured under oversaturation conditions. Am(III) stock solution in perchlorate media was sequentially diluted in Syn-DB3 to prepare 8 μM Am(III) in Syn-DB3. The pH of the solutions was adjusted to be in the range of 6.4–10.5. A portion of the samples was transferred to quartz cells for UV-Vis absorption and time-resolved laser fluorescence spectroscopy studies and the rest were stored in centrifuge tubes. The absorption spectra of the samples were monitored over 70 days and the results suggest that Am colloidal particles were formed initially in all the samples and precipitated rapidly within two days. Over the experimental period of 236 days, small volume (10 μL) of the samples in the centrifuge tubes were periodically withdrawn after centrifugation (18000 rpm, 1 hr) for the liquid scintillation counting to measure the concentrations of Am dissolved in Syn-DB3. In the end of the experiments, pH of the samples was checked again and the final dissolved Am concentrations were determined after ultrafiltration (10 kDa) to exclude the contribution of colloidal particles. In the pH range of 8-9, which is relevant to the KURT-DB3 groundwater condition, the measured dissolved Am(III) concentrations were converged to around 10-8 M. These values are higher than the solubility of AmCO3OH:0.5H2O(s), but lower than that of AmCO3OH(am). There was no indication of transformation of the amorphous phase to the crystalline phase in our observation time window.
Dissolution behaviors of ThO2(cr) and PuO2(cr) in synthetic groundwater were investigated at room temperature (23 2°C) under atmospheric conditions. The synthetic groundwater was prepared according to the chemical composition of the KURT-DB3 groundwater. The pH and Eh of the synthetic groundwater were pH 8.9 and 0.5 V, respectively, and the major components were Na, K, Ca, Mg, Si, Cl, SO4, F and HCO3 ions. A few mg of ThO2(cr) and PuO2(cr) powder were added in the synthetic groundwater and the concentrations of Th and Pu in supernatant were monitored for 5 months of reaction time. The concentrations of Th before and after ultracentrifugation were compared, while the solid-liquid phase separation of Pu samples could not be applied due to the small volume of sample solutions. The concentrations of Th and Pu were measured by ICP-MS and alpha spectrometry, respectively. Geochemist’s Work Bench (GWB, standard, 17.0) was applied for the modeling with ThermoChimie TDB v. 11a, which was updated with the latest NEA-TDB (vol. 14). Aqueous species distributions and solubility limiting solid phases of Th and Pu under the synthetic groundwater conditions were evaluated. The results of geochemical modeling indicate that aqueous Th-OH-CO3 ternary species and Pu(IV) species are dominant in solutions equilibrated with ThO2(s) and PuO2(am, hyd), respectively. The dissolution behaviors of ThO2(cr) and PuO2(cr) are comparable to the dissolution of ThO2(aged, logKsp = 8.5) and the oxidative dissolution of PuO2(am, hyd) in the presence of PuO2(coll, hyd), respectively.