검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2023.11 구독 인증기관·개인회원 무료
        The design and fabrication of suitable waste forms with high thermal and structural stability are essential for the safe management and disposal of radioactive wastes. In particular, the thermal properties and temperature distribution of waste form containing high heat-generating nuclides such as Cs and Sr can be used to evaluate its thermal stability, but also provide useful information for the design of canisters, storage systems, and repositories. In this study, a new program code-based thermal analysis framework has been developed to facilitate the characterization, design, and optimization of the waste form. Matlab was used as a software development platform because it provides powerful mathematical computation and visualization components such as the partial differential equation (PDE) toolbox for solving heat transfer problems using finite element method, the App Designer for graphical user interface (GUI), and the MATLAB Compiler for sharing MATLAB programs as standalone applications and web applications. The thermal analysis results such as temperature distribution, heat flux, maximum/ minimum temperature, and centerline/surface temperature profile are visualized with graphs and tables. To evaluate the effectiveness of the developed program, several design and optimization studies were carried out for the SrTiO3 waste form, selected as a stable form of strontium nuclide.