Seawater containing metals such as lithium and manganese is a “treasure trove” of infinite energy resources. Numerous domestic and foreign institutions are developing technologies to economically extract these resources from seawater. One method for extracting metal ions dissolved in seawater is the development of adsorbents with negative functional groups. Generally, adsorbents have adsorption performance that depends on factors such as seawater pH and temperature, but controlling the pH and temperature of seawater is practically impossible. On the other hand, thermal effluent discharged from power plants tends to be slightly higher in temperature than the surrounding environment. Therefore, this study investigates the potential for utilizing power plant effluent to extract dissolved resources in seawater. Results of investigations into several items related to the effluent from the Gori, Wolsong, Hanbit, and Hanul power plants are presented.
The purpose of this study was to compare the efficiency of air and oxygen injected into the underwater non-thermal dielectric barrier discharge plasma (DBD plasma) device used to remove five types of antibiotics (tetracycline, doxycycline, oxytetracycline, clindamycin, and erythromycin) artificially contained in the fish farm discharge water. The voltage given to generate DBD plasma was 27.8 kV, and the measurement intervals were 0, 0.5, 1, 2, 4, 8, 16 and 32 minutes. Tetracycline antibiotics significantly decreased in 4 minutes when air was injected and were reduced in 30 seconds when oxygen was injected. After the introduction of air and oxygen at 32 minutes, 78.1% and 95.8% of tetracycline were removed, 77.1% and 96.3% of doxycycline were removed, and 77.1% and 95.5% of oxytetracycline were removed, respectively. In air and oxygen, 59.6% and 83.0% of clindamycin and 53.3% and 74.3% of erythromycin were removed, respectively. The two antibiotics showed lower removal efficiency than tetracyclines. In conclusion, fish farm discharge water contains five different types of antibiotics that can be reduced using underwater DBD plasma, and oxygen gas injection outperformed air in terms of removal efficiency.