Slaughter of cattle, pigs, and chickens is continuously increasing. Slaughter of chickens has especially increased by approximately 50% from 2003. The quantity of poultry slaughter waste is currently approximately 120,000 tons/year, and undergoes consigned treatment. Via this process, the waste must be used as a resource and an energy source. For this purpose, the waste volume can be reduced and solid fuel can be obtained from the THR (Thermal Hydrolysis Reaction) that consumes a small amount of energy. In this study, The test was conducted at a reaction temperature of 170-220oC and for 1h at the final temperature. According to the CST (Capillary Suction Time) and TTF (Time to Filter) evaluation, the dehydrating efficiency was good after the temperature reached 190oC, and did not significantly differ at the 190oC and higher reaction temperatures. The heating value of the dehydrated solid product was 7,000-7,700 kcal/kg, and its yield rate decreased from approximately 80% to 60% with the increase in the reaction temperature. The results of the BMP test also showed that the anaerobic digestion efficiency decreased at the reaction temperatures of 200oC and higher. From the overall evaluation of the dehydrating efficiency, solid fuel quality, and anaerobic digestion efficiency during the thermal hydrolysis of poultry slaughter waste, it is concluded that the optimal operating temperature is 190oC.
Diverse studies are being conducted on sewage sludge treatment and recycling methods, but the demand for a lowcost treatment technology is high because the sewage sludge has an 80% or higher water content and a high energy consumption cost. For this purpose, the waste volume can be reduced and solid fuel can be obtained from the Thermal Hydrolysis Reaction (THR) that consumes a small amount of energy. The experiment was conducted at a reaction temperature of 170-220oC and maintain for 1 hour at the final temperature. According to the Capillary Suction Time (CST) and Time to Filter (TTF) evaluation, the dewater ability was good after the temperature reached 200oC and did not significantly differ at the 200oC and higher reaction temperatures. The heating value of the dehydrated solid product was 3,800-4,200 kcal/kg, and its yield rate decreased from approximately 80% to 60% with the increase in the reaction temperature. To evaluate the efficiency of anaerobic digestion, the water quality of the liquid product was analyzed based on the reaction temperature. At the temperatures of 200oC and higher, the concentration of ammonia, which increases the pH and hinders anaerobic digestion rapidly increased. From the overall evaluation of the dehydrating efficiency, solid fuel quality, and anaerobic digestion efficiency during the thermal hydrolysis of sewage sludge, it is concluded that the optimal operating temperature is 200oC.