In this study, the time-area curve for an elliptical shaped basin was analytically derived. The assumptions introduced to derive the time-area curve are as follows. First, an infinite number of raindrops reach the impervious surface of the elliptical shaped basin evenly in space. Second, the vertical axis of the ellipse is assumed to be the channel of the elliptical shaped basin. Third, the direction of the surface runoff is always perpendicular to the channel flow. Fourth, the flow velocity remains the same in any location within each channel and land surface, the ratio of their flow velocity is consistent everywhere within the basin. As a result, the time-area curve for the basin can be derived with the equivalent ellipse of the basin along with the proper characteristic velocity within each channel and land surface. Furthermore, by multiplying the flow velocity with this time-area curve, one can derive the inflow to the linear reservoir, of which the outflow becomes the Clark IUH.
본 연구에서는 Clark 방법으로 유역유출해석을 수행할 때 요구되는 시간-면적곡선을 GIS 기법을 이용하여 객관적으로 산정할 수 있는 방법을 제안하고, 이와같은 시간-면적곡선이 유출해석에 미치는 영향을 검토하는데 있다. Clark 방법의 세 매개변수인 시간-면적곡선, 저류상수 및 도달시간의 상대적인 비교를 위해 1990. 9. 10 ∼ 9. 14 홍수사상을 선택하여 소양댐 및 충주댐 유역에 대해 유량의 민감도 분석을 수행하였다. 본 연구에서는 특정유역의