검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2019.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The structural performance of a vehicle can be evaluated by the static and dynamic structural analyses which predict the amount of deformation, stiffness. And the static analysis should be done first. Another important aspect to be considered in the design process is crashworthiness, because a structurally sturdy vehicle body may be overdesigned with excessive strength and durability standards. The ideal condition of a body structure is to absorb impact load at a certain level of local deformation, to distribute the load to each structure adequately, and to prevent excessive stress concentration and deformation. This paper is the result of the consideration of automotive body, bending and torsional stiffness for structure stiffness estimation of automotive body through finite element modeling.
        4,000원
        2.
        2017.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The stiffness of a bicycle frame is a major factor of a bicycle performance related to safety, stability, and weight. In this study, the torsional and bottom bracket stiffness of a bicycle frame were experimentally investigated. The torsional and bottom bracket stiffness for 63 bicycle frames were evaluated and analyzed by measuring the displacement of frames. The torsional stiffness is related with turning performance and the bottom bracket stiffness is related with power transmission. The experimental results show that the average stiffness varies up to 20 % according to the frame materials and types. The torsional stiffness has a strong corelation with the bottom bracket stiffness even though they have different effects on a bicycle frame. It seems that the experimental results can be applied to the quality criteria of racing bicycles and also design standard of a bicycle frame.
        4,000원
        3.
        2017.04 구독 인증기관·개인회원 무료
        Torsional constants of both rectangular cross section and circular cross section are induced by exact solution, and was easy to calculate since of simple shape. However, it is very difficult to calculate the torsional constant of both an arbitrary cross-section and a composite cross-section. In this study, a finite element formulation was proposed as a method to calculate the torsional constant of both an arbitrary cross-section and a composite cross-section. From the numerical study, numerical results was compared with exact solution.