교통안전시설물의 관리는 도로교통의 안전과 직결되는 문제이다. 운전자는 신호등, 표지판, 노면표시 등을 통해 운전에 필요한 정보 를 얻는다. 노후된 표지판과 노면표시는 운전자에게 잘못된 정보를 제공할 수 있으므로 주기적인 시설물의 관리가 필요하다. 본 연구 는 딥 러닝 기술을 활용해 운전자 시각의 영상 자료에서 교통안전표지를 자동으로 탐지하고자 하며, 교통안전표지의 공통된 색상 특 징을 기반으로 클래스를 그룹으로 묶어 데이터셋을 구축하는 방법을 제안한다. 객체탐지의 성능지표로 널리 활용되는 mAP를 사용해 클래스 묶음 여부에 따른 탐지 성능을 비교한 결과, 색상 기반 클래스 묶음을 적용한 모델의 탐지 성능이 비교군에 비해 약 36% 상승 함을 확인하였다.
PURPOSES: This study is to develop a road traffic sign recognition and automatic positioning for road facility management. METHODS: In this study, we installed the GPS, IMU, DMI, camera, laser sensor on the van and surveyed the car position, fore-sight image, point cloud of traffic signs. To insert automatic position of traffic sign, the automatic traffic sign recognition S/W developed and it can log the traffic sign type and approximate position, this study suggests a methodology to transform the laser point-cloud to the map coordinate system with the 3D axis rotation algorithm. RESULTS: Result show that on a clear day, traffic sign recognition ratio is 92.98%, and on cloudy day recognition ratio is 80.58%. To insert exact traffic sign position. This study examined the point difference with the road surveying results. The result RMSE is 0.227m and average is 1.51m which is the GPS positioning error. Including these error we can insert the traffic sign position within 1.51m CONCLUSIONS: As a result of this study, we can automatically survey the traffic sign type, position data of the traffic sign position error and analysis the road safety, speed limit consistency, which can be used in traffic sign DB.
Recognition of traffic signs helps an unmanned ground vehicle to decide its behavior correctly, and it can reduce traffic accidents. However, low cost traffic sign recognition using a vision sensor is very difficult because the signs are exposed to various illumination conditions. This paper proposes a new approach to solve this problem using an illuminometer which detects the intensity of illumination. Using the intensity of illumination, the recognizer adjusts the parameters for image processing. Therefore, we can reduce the loss of information such as the shape and color of traffic signs. Experimental results show that the proposed method is able to improve the performance of traffic sign recognition in various weather and lighting conditions.