In this study, four technologies were selected to treat river water, lake water, and groundwater that may be contaminated by tritium contaminated water and tritium outflow from nuclear power plants, performance evaluation was performed with a lab-scale device, and then a pilot-scale hybrid removal facility was designed. In the case of hybrid removal facilities, it consists of a pretreatment unit, a main treatment unit, and a post-treatment unit. After removing some ionic, particulate pollutants and tritium from the pretreatment unit consisting of UF, RO, EDI, and CDI, pure water (2 μS/cm) tritium contaminated water is sent to the main treatment process. In this treatment process, which is operated by combining four single process technologies using an inorganic adsorbent, a zeolite membrane, an electrochemical module and aluminumsupported ion exchange resin, the concentration of tritium can be reduced. At this time, the tritium treatment efficiency of this treatment process can be increased by improving the operation order of four single processes and the performance of inorganic adsorbents, zeolite membrane, electrochemical modules, and aluminum- supported ion exchange resins used in a single process. Therefore, in this study, as part of a study to increase the processing efficiency of the main treatment facility, the tritium removal efficiency according to the type of inorganic adsorbent was compared, and considerations were considered when operating the complex process.
Though many treatment technologies of contaminated water have been developed for a long time, it is still difficult to find a suitable method for large volumes of low radioactivity tritium-contaminated water. For this reason, most of the tritium-contaminated water been discharged to the biosphere or been stored in a special control area as radioactive waste. Activated carbon is a common material, but since there are few data on the treatment of tritium-contaminated water, its adsorption behavior to HTO is worth studied. In our study, for the tritium-contaminated water having a low radioactivity concentration (350-480 Bq/g), adsorption experiments were performed with activated carbon. The effects on the selective adsorption of HTO were investigated for temperature (5-55°C), hydrogen peroxide (1-10wt%) and activated carbon reuse (1-6 times) under non-equilibrium conditions. The treatment of activated carbon significantly reduced the radioactivity of tritium-contaminated water around 60 minutes of adsorption time. In order to clearly analyze the experimental results, positive factors and negative factors on the HTO selectivity were separately evaluated according to the adsorption time. Temperature and the reuse of activated carbon were evaluated as negative factors for HTO selectivity of activated carbon, whereas hydrogen peroxide (> 5wt%) was evaluated as a positive factor. By the evaluation method of separating the influencing factors into two types, the adsorption experimental results of HTO could be understood more clearly.