As the capacity of renewable power generation facilities rapidly increases, the variability of electric power system and gas turbine power generation is also increasing. Therefore, problems may occur that require urgent repair while the gas turbine rotor is stopped. When the gas turbine rotor turning is stopped and then restarted, if the turning period is not appropriate, severe vibration may occur due to rotor bending. As a result of the experiment, it was confirmed that normal operation is possible when the gap data measured at the start of rotor turning after maintenance work is similar to the existing value. And the vibration value at the start of rotor turning was lower as the rotor temperature was lower or the stop period was shorter.
Background: Losing balance during locomotive actions becomes an increasing threat to both the community-dwelling elderly and elderly with Parkinson disease (PD). Those with PD may be at a high risk of fall due to particular characteristics during the turn. Turning around during locomotive actions may be one of problematic factors causing losing balance.
Objects: This study is part of a larger study, which in part aims to identify turning strategies, to compare the strategies in the elderly with and without idiopathic PD aged 51 years and older and to distinguish whether the turning strategies can predict the elderly at risk of falls.
Methods: A total of 22 community-dwelling elderlies (10 elderlies with idiopathic PD and 12 healthy elderlies) were investigated for the turning strategies during the timed up and go test.
Results: There were some significant differences between the two groups during turning (p<.05). The idiopathic PD group had a tendency of challenging on taking more number of steps, more time to accomplish and staggering more for the turn relative to the control group.
Conclusion: Taking more number of steps and more time to turn may be useful for distinguishing the characteristics of PD from that of the healthy elderly in turning strategy.