검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 30

        2.
        2022.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We present the photometric properties of V608 Cas from detailed studies of light curves and eclipse timings. The light curve synthesis indicates that the eclipsing pair is an overcontact binary with parameters of ΔT = 155 K, q = 0.328, and f = 26%. We detected the third light ℓ3, which corresponds to about 8% and 5% of the total systemic light in V and R bands, respectively. Including our 6 timing measurements, a total of 38 times of minimum light were used for a period study. It was found that the orbital period of V608 Cas has varied in some combination of an upward parabola and two periodic variations. The continuous period increase with a rate of +3.99 × 10−7 d yr−1 can be interpreted as a mass transfer from the secondary component to the primary star at a rate of 1.51 × 10−7 M⊙ yr−1. The periods and semi-amplitudes of the two periodic variations are about P3 = 16.0 yr and P4 = 26.3 yr, and K3 = 0.0341 d and K4 = 0.0305 d, respectively. The most likely explanation of both cycles is a pair of light-traveling time effects operated by the possible presence of third and fourth components with estimated masses of M3 = 2.20 M⊙ and M4 = 1.27 M⊙ in eccentric orbits of e3 = 0.66 and e4 = 0.52. Because the contribution of ℓ3 is very low compared to the estimated masses of two circumbinary objects, they can be inferred as very faint compact objects.
        4,000원
        3.
        2015.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We review recent results on superhump period variations in SU UMa-type dwarf novae. Our statistical studies have revealed that the evolution of the superhump period is basically composed of three stages: stage-A, during which the superhump period is long and constant, stage-B, during which the superhump period increases as the superoutburst proceeds, and stage-C, during which the superhump period is short and constant. We also introduce a new method of estimating a mass ratio using the stage-A superhump period. This method can extend to, for example, low mass X-ray binaries or AM CVn stars if the stage-A superhump period is well determined.
        3,000원
        4.
        2015.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this work we present the results of light curve analysis for two cataclysmic variables detected recently in the SDSS project: SDSS J090350.73+330036.1 and J150240.98+333423.9. Photometric observations of the rst were obtained during a superoutburst in May 2010. Our observations clearly indicate the presence of superhumps in the light curves, suggesting SDSS J090350.73+330036.1 is an SU UMa dwarf nova. We determined the period of the superhumps. We also carried out fitting using a spiral-arm model in order to determine parameters of the accretion disk, hot line, and other components of this system. Photometric observations of the second, J150240.98+333423.9, were obtained during the post-maximum decline, during April-June 2012. Photometric variability of this system has been studied in an inactive state. We obtained its parameters via a combined model fitted to the observed light curves by X2 mini- mization.
        4,000원
        5.
        2011.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The photometric light curves of the W-type W UMa eclipsing contact binary system BB Pegasi have been found to be extremely asymmetric over all the observed 63 years in all wavelengths UBVR. The light curves have been characterized by occultation primary minima. Hence, the morphology of these light curves has been studied in view of these different asymmetric degrees. The system shows a distinct O'Connell effect, as well as depth variation. A 22.96 years of stellar dark spots cycle has been determined for the system. Almost the same cycle (22.78 yr) has been found for the depth variation of MinI and MinII. We also present an analysis of mid-eclipse time measurements of BB Peg. The analysis indicates a period decrement of 5.62X 10-8 day/yr, which can be interpreted in terms of mass transfer at a rate of -4.38 X 10-8M⊙/yr, from the more to the less massive component. The O - C diagram shows a damping sine wave covering two different cycles of 17.0 yr and 12.87 yr with amplitudes equal to 0.0071 and 0.0013 day, respectively. These unequal durations show a non-periodicity which may be explained as a result of magnetic activity cycling variations due to star spots. The obtained characteristics are consistent with similar chromospherically active stars, when applying the Applegate's (1992) mechanism.
        4,300원
        6.
        2010.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We present an analysis of the measurements of mid-eclipse times of V839 Oph, collected from literature sources. Our analysis indicates a period increase of 3.2 X 10-7 day/yr. This period increase of V839 Oph can be interpreted in terms of mass transfer of rate 1.76 X 10-7⊙/yr, from the less to the more massive component. The O - C diagram shows a damping sine wave covering two different complete cycles of 36.73 yr and 19.93 yr with amplitudes approximately equal to 0.0080 and 0.0043 day, respectively. The third cycle has to be expected to cover about 13.5 years with lower amplitude than those of the former two cycles. These unequal duration cycles show a non periodicity which may be explained as resulting from either the presence of a tertiary component to the system or cyclic magnetic activity variations due to star spots. For the later mechanism, the obtained characteristics are consistent when applying Applegate (1992) mechanism.
        4,200원
        7.
        2005.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The authors have assembled a sample of 80 W UMa binary systems (42 W-subtype and 38 A-subtype) whose light curves have all been solved by means of the recent W-D code and combined with up-to-date radial velocity solutions. The absolute parameters (masses, radii and luminosities) have been derived (without any constraint on the physical parameters). The main results of this paper are: (1) the mass-luminosity relations for both W&A-subtypes. as well as for all W UMa contact binaries have been shown, (2) the mass-radius relations have been found for both subtypes, (3) some remarks on the evolution status have been presented.
        4,800원
        10.
        1999.10 구독 인증기관·개인회원 무료
        12.
        1982.12 구독 인증기관·개인회원 무료
        13.
        2019.12 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        We present new BVRI light curves of UY UMa with no O’Connell effect and a flat bottom secondary eclipse. Light curve synthesis with the Wilson-Devinney code gives a new solution, which is quite different from the previous study: UY UMa is an A-subtype over-contact binary with a small mass ratio of q = 0.21, a high inclination of 81˚.4, a small temperature difference of ΔT = 18˚, a large fill-out factor of f = 0.61, and a third light of approximately 10% of the total systemic light. The absolute dimensions were newly determined. Seventeen new times of minimum light have been calculated from our observations. The period study indicates that the orbital period has intricately varied in a secular period increase in which two cyclical terms with periods of 12y.0 and 46y.3 are superposed. The secular period increase was interpreted to be due to a conservative mass transfer of 2.68 × 10–8 M⊙/yr from the less massive to the more massive star. The cyclical components are discussed in terms of double-light time contributions from two additional bound stars. The statistical relations of Yang & Qian (2015) among the physical parameters of 45 deep, low mass ratio contact binaries were revisited by using the physical parameters of UY UMa and 25 Kepler contact binaries provided by Şenavci et al. (2016).
        14.
        2012.06 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        An intensive analysis of 148 timings of V700 Cyg was performed, including our new timings and 59 timings calculated from the super wide angle search for planets (SWASP) observations, and the dynamical evidence of the W UMa W subtype binary was examined. It was found that the orbital period of the system has varied over approximately 66y in two complicated cyclical components superposed on a weak upward parabolic path. The orbital period secularly increased at a rate of +8.7 (±3.4) × 10-9 day/year, which is one order of magnitude lower than those obtained by previous investigators. The small secular period increase is interpreted as a combination of both angular momentum loss (due to magnetic braking) and mass-transfer from the less massive component to the more massive component. One cyclical component had a 20.y3 period with an amplitude of 0.d0037, and the other had a 62.y8 period with an amplitude of 0.d0258. The components had an approximate 1:3 relation between their periods and a 1:7 ratio between their amplitudes. Two plausible mechanisms (i.e., the light-time effects [LTEs] caused by the presence of additional bodies and the Applegate model) were considered as possible explanations for the cyclical components. Based on the LTE interpretation, the minimum masses of 0.29 M⊙ for the shorter period and 0.50 M⊙ for the longer one were calculated. The total light contributions were within 5%, which was in agreement with the 3% third-light obtained from the light curve synthesis performed by Yang & Dai (2009). The Applegate model parameters show that the root mean square luminosity variations (relative to the luminosities of the eclipsing components) are 3 times smaller than the nominal value (ΔL/Lp,s ≈ 0.1), indicating that the variations are hardly detectable from the light curves. Presently, the LTE interpretation (due to the third and fourth stars) is preferred as the possible cause of the two cycling period changes. A possible evolutionary implication for the V700 Cyg system is discussed.
        1 2