The periodontal ligament (PDL) is that soft, specialized connective tissue situated between the cementum covering the root of the tooth and bone forming the socket wall. The PDL is a connective tissue particularly well adapted to its principal function, supporting the teeth in their sockets and at the same time permitting them to withstand the considerable force of mastication. During the life time, PDL is usually exposed to mechanical stress by mastication. However, little is known about the gene which is related to the mechanical stress in PDL. UNC-50 (PDLs22) was identified and isolated from D. melanogater and C. elegance. This gene was also regulated in sensory bristle for mechanotransduction in D. melanogaster. In this study, to uncover the relationship between UNC-50 and mechanical stress, we induced the mechanical stress by medium displacement in cementoblast cell line. After mechanical stress induction UNC-50 expression was analyzed by RT-PCR, Real-time PCR, and western analysis. The expression of UNC-50 was increased after medium displacement of cementoblast in vitro. Collagen type I, type III, and osteonection mRNAs were also strongly expressed after mechanical stress induction. The results of this study suggest that UNC-50 might responsible for molecular event in PDL inducing cementoblast under mechanical stress.