We have done a spectroscopic study of the solar transition region using high resolution UV & EUV data obtained by SUMER(Solar Ultraviolet Measurements of Emitted Radiation) on board SOHO(Solar and Heliospheric Observatory). Optically thin and conspicuous emission lines observed at the solar limb are carefully selected to acquire average values of physical parameters for the quiet region as a function of radial distance. Our main results found from the present study can be summarized as follows. 1) Nonthermal velocities estimated from various UV lines do not decrease with height at least within one total line intensity scale height above the limb. 2) Nonthermal velocity distribution with temperature is very similar to that of the disk center, in the sense that its peak is located around 2 × 10 5 K, but the value is systematically larger than that of the disk. 3) It is found that nonthermal velocity is inversely proportional. to quadratic root of electron density up to about 10 arc seconds above the limb, i.e. ℇ~Ne-1/4, implying that the observed nonthermal broadening can be attributed to Alfven waves passing through the medium. 41 Electron density estimated from the O V 629/760 line ratio is found to range from about 1×10 10cm-3 to 2 × 10 12cm-3 in the transition region.
To understand the basic physics underlying large spatial fluctuations of intensity and Doppler shift, we have investigated the dynamical charctersitics of the transition region of the quiet sun by analyzing a raster scan of high resolution UV spectral band containing H Lyman lines and a S VI line. The spectra were taken from a quiet area of 100"×100" located near the disk center by SUMER on board SOHO. The spectral band ranges from 906 Å to 950 Å with spatial and spectral resolution of 1" and 0.044 Å, respectively. The parameters of individual spectral lines were determined from a single Gaussian fit to each spectral line. Then, spatial correlation analyses have been made among the line parameters. Important findings emerged from the present analysis are as follows. (1) The integrated intensity maps of the observed area of H I 931 line (1×10 4 K) and S VI 933 line (2×10 5 K) look very smilar to each other with the same characterstic size of 5". An important difference, however, is that the intensity ratio of brighter network regions to darker cell regions is much larger in S VI 933 line than that in H I 931 line. (2) Dynamical features represented by Doppler shifts and line widths are smaller than those features seen in intensity maps. The features are found to be changing rapidly with time within a time scale shorter than the integration time, 110 seconds, while the intensity structure remains nearly unchanged during the same time interval. (3) The line intensity of S VI is quite strongly correlated with that of H I lines, but the Doppler shift correlation between the two lines is not as strong as the intensity correlation. The correlation length of the intensity structure is found to be about 5.7' (4100 km), which is at least 3 times larger than that of the velocity structure. These findings support the notion that the basic unit of the transition region of the quiet sun is a loop-like structure with a size of a few 10 3 km, within which a number of unresolved smaller velocity structures are present.