검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 11

        1.
        2012.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fish contain both the neurotoxin methyl mercury (MeHg) and nutrients important for brain development. The developing brain appears to be most sensitive to MeHg toxicity and mothers who consume fish during pregnancy expose their fetus prenatally. Although brain development is most dramatic during fetal life, it continues for years postnatally and additional exposure can occur when a mother breast feeds or the child consumes fish. This raises the possibility that MeHg might influence brain. We evaluated the relationship between fish consumption and mercury exposure levels in umbilical cord blood of the pregnant women of the city of Tongyeong city, Korea. A total of 159 pregnant women residing in the city of Tongyeong, Korea were recruited for the study between October 2010 and March 2011. Fish consumption was evaluated using food frequency questionnaires including detailed questions on fish consumption. We used ANOVA to estimated the particular relevance between the frequency of fish consumption and the umbilical cord blood mercury concentration, and other various factors. The average mean concentration of mercury levels in umbilical cord blood of pregnant women who participated in our study were 2.69 ± 2.50 ppb, ranging from 0.01 to 14.80 ppb. The mean concentration of umbilical cord blood mercury exposure was lower than the level recommended by WHO (5.0 ppb), but the mercury exposure level exceeded the WHO recommended in 17 (10.7%) cases of umbilical cord blood. Mercury levels in cord blood of pregnant women were 2.04 ± 2.00 ppb, ranging from 0 to 8.00 ppb in below 29 years old and 3.18 ± 2.74 ppb, ranging from 0.01 to 14.80 ppb in more 30 years old. In this study, there was a significant difference for the frequency of eating fish between the groups (p < 0.01). The level of the groups that ate fish 3 to more times per week (4.15 ± 4.02 ppb) was significant higher as compared with the level of other groups that ate fish 1 to times per week (2.63 ± 2.22 ppb) and none per week (1.06 ± 1.44 ppb), respectively. We found that the mercury concentration of umbilical cord blood associate with fish consumption and this was statistically significant and this fact revels that fish consumption is positively related to mercury levels in the umbilical cord blood. We need systematic and periodic research on the general population to prevent mercury poisoning, which can be cause by low-level mercury exposure from dietary intake such as chronic fish consumption
        4,000원
        2.
        2011.09 구독 인증기관 무료, 개인회원 유료
        Endothelial cells are a vital constituent of most mammalian organs and are required to maintain the integrity of these tissues. These cells also play a major role in angiogenesis, inflammatory reactions, and in the regulation of thrombosis. Angiogenesis facilitates pulp formation and produces the vessels which are essential for the maintenance of tooth homeostasis. These vessels can also be used in bone and tissue regeneration, and in surgical procedures to place implants or to remove cancerous tissue. Furthermore, endothelial cell regeneration is the most critical component of the tooth generation process. The aim of the present study was to stimulate endothelial regeneration at a site of acute cyclophosphamide (CP)-induced endothelial injury by treatment with human umbilical cord-derived endothelial/mesenchymal stem cells (hEPCs). We randomly assigned 16 to 20-week-old female NOD/SCID mice into three separate groups, a hEPC (1 × 105 cells) transplanted, 300mg/kg CP treated and saline (control) group. The mice were sacrificed on days 5 and 10 and blood was collected via the abdominal aorta for analysis. The alanine transaminase (ALT), aspartate aminotransferase (AST), serum alkaline phosphatase (s-ALP), and albumin (ALB) levels were then evaluated. Tissue sections from the livers and kidneys were stained with hematoxylin and eosin (HE) for microscopic analysis and were subjected to immunohistochemistry to evaluate any changes in the endothelial layer. CP treatment caused a weight reduction after one day. The kidney/body weight ratio increased in the hEPC treated animals compared with the CP only group at 10 days. Moreover, hEPC treatment resulted in reduced s-ALP, AST, ALT levels compared with the CP only group at 10 days. The CP only animals further showed endothelial injuries at five days which were recovered by hEPC treatment at 10 days. The number of CD31-positive cells was increased by hEPC treatment at both 5 and 10 days. In conclusion, the CP-induced disruption of endothelial cells is recovered by hEPC treatment, indicating that hEPC transplantation has potential benefits in the treatment of endothelial damage.
        4,000원
        3.
        2007.10 KCI 등재 구독 인증기관·개인회원 무료
        Recovery 01' original form ancl function from c1amaged organs 01' tissues is olltmost goal of regenera tive meclicine. Va riolls methods such as moleclll ar biology. drug c1elivery system, biomaterials. tissue engineering have been s tllcliecl and appl iecl in that field . 1'he core factor of all 01' these kinds of efforts might be the cells including stem cells 01' progenitor cell s . AclllJt progenitor 01' stem cells have many advantages for therapeutic meclicine, inclucling free form ethi cal probl em. easiness in collection and clllture. Bone marrow‘ fat tissue, peripheral blood. placenta‘ ancl umbilicaJ cord bloocl a re preferable source 01' acllllt stem cells 01' progenitors. ]-]uman umbilical cord bloocl. taken form vein of corcl after baby c1elivery‘ are known to contain many progenitor cells. Since Boyse et al reportecl bone marrow transplantation with hllman cord blood CD34+ cells f'or leukemia. functional cells in human cord blood have been the cells of great interest. 1n this study‘ the a u thors i s이 ated peripheral bloocl mononuciear celJs. endothelial progenitors‘ late outgrowth vascular endothelial-like cells‘ ancl mesenchymal stem cell- like cells from human umbilical cord blood and a pplied in bony defects, myocardiac infarction and limb ischemic lesl0n Al I of these fllnctional cells showed favorable healing capacity and their effects primarily based on enhanced anglOgenesls Conclllsively. a lthollgb the precise cha racteristics are not well-described‘ the current stucly reveals that various types of functional cell s of human umbilical cord blood have some stem cell or progenitors features and play an important r ole in ti ssue regeneration
        4.
        2007.10 KCI 등재 구독 인증기관·개인회원 무료
        3BK21 program for Veterinary Science, College of Veterinary Medicine‘ Seoul National University. Seoul. Korea Human Co1'd blood has been used for the alternatives of bone marrow transplantation for more 10 years. Recently Mesenchymal s tem cell s , ES-like cells and endothelial stem cells has been successfuly isolated from huam co1'd blood Presentl y. it has been reported that a bout 70 incurable ans tractible di sease was possibly cured by umbili cal cord blood-deri ved s tem cells in the clinit;al test s‘ However‘ isolation and expansion of s tem cells from human umbilical cord blood(UCB) have been very difficult and an obstrucle for the clinical use This study showed that effi cient s iolat iona and expans ion of mesenchymal stem cells from UCB Full term UCB samples were obtained from the umbi lical vein after vaginal deli ve ry with the informed consent 0 1' the mothe1' approved by Borame Hospital Institutional Review Broad (IRB). And a lso. t his work was also a pproved by Seoul National University IRB. Recently, we isolated a population of s tem cells from human corcl bloocl (UCB)‘ which expressed embryo stage specific maker. SSEA-4. ancl the multi-potential stem cell marker‘ 。c t4 And we have sucessfully developed culture methods to expand ancl subculture these cells up to 1.000 billion from one single clone. Subsequently. we were a ble to transclifferente theses stem cells into insulin- producing is let- like structures. which co-express in sulin andC-pepticle, adipocyte, neuron‘ bone and cartilage. In acldition. the isola tion rate of MSC from UCB is about 70 % from the cord blood units. This isolation rate were not affected by maternal ages. the sex of baby, isolation time from the deli very. for example. 12 hrs. 24 hrs ‘ even 48 hrs from delivery Taken together. these findings might have a s ignificant potential to aclvance human UCB clerivecl stem- cell -basecl ther apeutics fOI' clinical use in near future
        8.
        2003.06 구독 인증기관 무료, 개인회원 유료
        본 연구는 분만시 동복 신생자돈의 제대혈에서 추출한 genomic DNA를 PCR-RFLP 기법을 이용하여 농가수입증대를 위하여 육질이 불량한 PSS 돼지를 판별하는 방법을 개발하기 위한 기초실험으로써 그 결과를 요약하면 다음과 같다. 자돈 제대에서 혈액 genomic DNA를 추출하여 PCR에 의하여 증폭된 ryanodine receptor gene 영역의 산물은 자돈의 제대혈에서 1.8kb의 길이로 증폭되었음을 확인하였다. 제대혈에서 추출된 DNA 의 PCR 증폭 단편을 가지고 Hha I 제한효소로 digest 하여준 결과에서 PSS 돼지는 Yorkshire 종에서 출현하지 않았으나, Landrace 종과 Crossbred 종에서 각각 4.76%와 7.14%로 교잡종(LYD 또는 YLD)에서 더욱 많이 출현되었다. 이상의 결과로 볼 때 분만시 신생자돈의 제대혈을 채취하여 PSS 돼지를 조기에 선발하면 스트레스 감소는 물론 혈액채취의 간편성을 기대할 수 있을 것으로 판단된다.
        4,000원
        9.
        2007.09 KCI 등재 서비스 종료(열람 제한)
        인간 제대혈 세포는 조혈모세포, 중간엽 줄기세포와내피전구세포를 풍부하게 포함하고 있다. 인간 제대혈 속의 중간엽 줄기세포는 조혈모세포와는 달리 다능성 줄기세포이며 신경세포로 분화할 수 있는 잠재성을 가지고 있다. 본 연구에서는 세포배양을 통해 제대혈의 중간엽 줄기세포를 신경세포와 콜린성 신경세포로 분화를 유도하였다. 중간엽 줄기세포를 신경세포로 분화시키기 위해 배양액에 dimethyl sulphoxide(DMSO)와 butylated hydroxyani
        11.
        2003.09 서비스 종료(열람 제한)
        Human umbilical cord blood cells(HUCBC) are rich in mesenchymal progenitor cells, endothelial cell precursors and hematopoietic cells. HUCBC have been used as a source of transplantable stem and progenitor cells. However, little is known about survival and development of HUCBC transplantation in the CNS. Estrogen has a neuroprotective potential against oxidative stress-induced cell death so has an effect on reducing infarct size of ischemic brain. We investigated the potential use of HUCBC as donor cells and tested whether estrogen mediates intravenously infused HUCBC enter and survive in ischemic brain. PKH26 labeled mononuclear fraction of HUCBC were injected into the tail vein of ischemic OVX rat brain with or without -estradiol valerate(EV). Under fluorescence microscopy, labeled cells were observed in the brain section. Significantly more cells were found in the ischemic brain than in the non-ischemic brain. HUCBC transplanted into ischemic brain could migrate and survive. Some of cells have shown neuronal like cells in hippocampus, striatum and cortex tissues. These result suggest that estrogen reduces ischemic damage and increases the migration of human umbilical cord blood cells. This Study was supported by the Korea Science and Engineering Foundation(KOSEF) though the Biohealth Products Research Center(BPRC), Inje University, Korea.