In this study, a model-referenced underwater navigation algorithm is proposed for high-precise underwater navigation using monocular vision near underwater structures. The main idea of this navigation algorithm is that a 3D model-based pose estimation is combined with the inertial navigation using an extended Kalman filter (EKF). The spatial information obtained from the navigation algorithm is utilized for enabling the underwater robot to navigate near underwater structures whose geometric models are known a priori. For investigating the performance of the proposed approach the model-referenced navigation algorithm was applied to an underwater robot and a set of experiments was carried out in a water tank.
The camera has limitations of poor visibility in underwater environment due to the limited light source and medium noise of the environment. However, its usefulness in close range has been proved in many studies, especially for navigation. Thus, in this paper, vision-based object detection and tracking techniques using artificial objects for underwater robots have been studied. We employed template matching and mean shift algorithms for the object detection and tracking methods. Also, we propose the weighted correlation coefficient of adaptive threshold -based and color-region-aided approaches to enhance the object detection performance in various illumination conditions. The color information is incorporated into the template matched area and the features of the template are used to robustly calculate correlation coefficients. And the objects are recognized using multi-template matching approach. Finally, the water basin experiments have been conducted to demonstrate the performance of the proposed techniques using an underwater robot platform yShark made by KORDI.