수문모형의 매개변수 추정에 필요한 유량 관측 자료의 수집은 시·공간적으로 제한이 있어 우리나라도 아직 상당수의 미계측유역이 존재하며, 이를 보완하고자 주변 유역의 정보를 활용하는 지역화 방법들이 연구되어 왔다. 그러나 지역적 특성이나 기후 조건에 따라 지역화 방법의 결과가 상이하여 어느 지역에 어떠한 지역화 방법이 가장 우수하다고 판단하기 어렵다. 본 연구에서는 보편적으로 사용되는 지역화 방법인 지역회귀모형의 설명 변수에 공간근접모형으로 추정한 수문모형의 매개변수를 추가하여 회귀모형의 적합성을 향상시켰으며, 이를 하이브리드 지역화모형이라 정의하고 기존 방법들과 비교하였다. 계측유역으로는 관측 자료가 충분한 남한의 37개 유역을 선정하였고, 수문모형은 개념적 수문모형인 GR4J를 사용하였으며, 계측유역에 대한 수문모형의 매개변수 산정은 Shuffled complex evolution 알고리즘을 사용하였다. 유역 특성변수들 간 다중공선성을 고려하기 위해 Variation inflation factor를 사용하였고, Stepwise regression을 통해 회귀모형의 최적 설명변수를 선택하였다. 통계 값을 통해 모형의 적합성을 비교한 결과, 하이브리드 지역화모형에서 가장 작은 RMSE 값을 나타내었으며, 유역별 모의 값의 변동성이 줄어들어 결과의 불확실성 또한 낮아짐을 확인할 수 있었다. 따라서 하이브리드 모형이 미계측유역의 유출량 산정을 위한 하나의 대안이 될 수 있음을 확인하였다.
우리나라는 기후변화로 인해 강우의 변동성이 커지며 강우관측시스템이 지역적으로 불균형하고 시험유역을 제외한 대부분의 저수지 상류 유역이 미계측유역인 관계로 강우량, 유출량, 증발량 및 신뢰성 있는 관측 유입량이 절대적으로 부족하다. 이로 인해 유역의 특성을 반영한 강우-유출 관계를 유도하는데 문제점이 초래되고 있으며, 댐 및 저수지의 계획 및 설계 운영에 필요한 유입량 예측이 어려운 실정이다.
본 연구는 미계측유역 유입량의 정량적ㆍ정성적 분석방안을 수립하기 위해서 기존에 개발된 모형 IHACRES 모형, Sacramento 모형 및 Tank 모형을 이용하여 저수지의 유입량을 산정하고 각 모형의 매개변수를 지역화 하고자 한다. 지역화를 위해서 대상유역의 지형특성인자인 유역면적, 유로연장, 유역평균표고, 유역평균경사 및 단일형상계수와 회귀 분석하여 지역화시키고, 지역화를 통하여 산정된 매개변수를 각 모형에 적용하여 대상유역의 유입량을 재산정하여 처음에 산정한 유입량 값과 비교하여 각 모형의 지역화 가능성을 비교하였다.