Pure WC or WC with low Co concentration less than 0.5 wt.% is studied to fabricate high density WC/Co cemented carbide using vacuum sintering and post HIP process. Considering the high melting point of WC, it is difficult to consolidate it without the use of Co as binder. In this study, the effect of lower Co addition on the microstructure and mechanical properties evolution of WC/CO was investigated. By HIP process after vacuum sintering, hardness and density was sharply increased. The hardness values was using binderless WC.
In all larger hardmetal workshops furnaces for dewaxing, vacuum sintering or vacuum and overpressure sintering are today's standard. The furnace technology is well established. Equipment specifications such as operating overpressure, determine sintering cost, product quality, safety and reliability of the furnace and ultimately influence the competitiveness of the hard metal procucer in the global market. Essential furnace requirements are an efficient utilization of the furnace, an environmental friendly dewaxing system, high temperature uniformity, metallurgical treatment with process gases, as well as reduced cooling time by means of rapid cooling. Examples of reduced sintering costs are described achieved using a new design of vacuum sintering furnace with an improved rapid cooling device, cooling times are reduced by up to 45%. Additionally, a cost comparison of two different designs of vacuum overpressure sintering furnaces are included.
The microstructure evolution during sintering of a compact being composed of three layers of (WC-15%Co)/Fe powder mixture with different Fe contents has been observed. The Fe contents in the respective (WC-15%Co)/Fe layers were varied by 20%. 50%, and 90% in sequence by volume from a top layer to a bot- tom layer. The sintering temperatures and times were varied from 110 to 125 and from 1 h to 4 h, The compact layer was not densified below 120 in 4 h. Appropriate sintering temperature and time conditions for making a multi-layered hard metal compact were determined as 125 and 3 h, respectively.