검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2013.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the microstructure and valuable metals dissolution properties of PDP waste panel powders were investigated as a function of milling parameters such as ball diameter size, milling time, and rotational speed during high-energy milling process. The complete refinement of powder could achieved at the ball diameter size of 5 mm due to sufficient impact energy and the number of collisions. With increasing milling time, the average particle size was rapidly decreased until the first 30 seconds, then decreased gradually about at 3 minutes and finally, increased with presence of agglomerated particles of at 5 minutes. Although there was no significant difference on the size of the particle according to the rotational speed from 900 to 1,100 rpm, the total valuable metals dissolution amount was most excellent at 1,100 rpm. As a result, the best milling conditions for maximum dissolving amount of valuable metals (Mg: 375 ppm, Ag 135 ppm, In: 17 ppm) in this research were achieved with 5 mm of ball diameter size, 3min of milling time, and 1,100 rpm of rotational speed.
        4,000원
        2.
        2015.02 KCI 등재 서비스 종료(열람 제한)
        The main objective of this study is to recovery valuable metals with metal particle size distributions in waste cell phone PCBs(Printed Circuit Boards) by means of pulverization and nitric acid process. The particle size classifier also was evaluated by specific metal contents. The PCBs were pulverized by a fine pulverizer. The particle sizes were classified by 5 different sizes which were PcS1(0.2 mm below), PcS2(0.20~0.51 mm), PcS3(0.51~1.09 mm), PcS4(1.09~2.00 mm) and PcS5(2.00 mm above). Non-magnetic metals in the grinding particles were separated by a hand magnetic. And then, Cu, Co and Ni were separated by 3M nitric acid. Particle diameter of PCBs were 0.388~0.402 mm after the fine pulverizer. The sorting coefficient were 0.403~0.481. The highest metal content in PcS1. And the bigger particle diameter, the lower the valuable metals exist. The recovery rate of the valuable metals increases in smaller particle diameter with same leaching conditions. For further work, it could improve to recovery of the valuable metals effectively by means of individual treatment, multistage leaching and different leaching solvents.
        3.
        2014.12 KCI 등재 서비스 종료(열람 제한)
        폐-광석으로부터 금속구리분말을 회수하기 위하여 더미 미생물용출, Fe 제거와 전기분해실험을 수행하였다. Cu가 0.034% 함유된 폐-광석시료에 대하여 더미 용출실험을 수행한 결과, Cu 용출률은 박테리아 용출-용액에서 61%, 황산 용출-용액에서 62%로 나타났다. Fe를 효과적으로 제거하기 위하여 더미 용출-용액에 NaOH, H2O2 및 Ca(OH)2를 각각 적용한 결과 H2O2가 가장 효과적인 Fe 제거제로 선정되었다. 전해질 용액을 준비하기 위하여 H2O2를 더미 용출-용액에 처리한 결과 박테리아 용출-용액에서 Fe가 99%, 황산 용출-용액에서 60%로 제거된 반면에 Cu 제거율은 각각 5%와 7%로 나타났다. 이 용액에 대하여 전기분해 실험을 수행한 결과 Cu 회수율이 박테리아 용출-용액에서 98%, 황산 용출-용액에서 76%로 나타났다. 모수석 형태의 금속구리분말이 양쪽 용출-용액에서 회수되었다.
        4.
        2013.07 KCI 등재 서비스 종료(열람 제한)
        Through industrial developing, electronic waste is occurred by short lifespan of electronic products. This study discusses an approach of the eco-efficiency for waste PCB (Printed Circuit Board) recycling process through environment and economic analysis. The recycling of waste PCB 1 kg has 1.89E + 00kg CO2 eq. of global warming potential and 2.84E −02 kg antimony eq. of abiotic resource depletion. In terms of economy, this process costs 6,601.91 KRW per 1kg waste PCB recycling. Use of economic and environmental result, when compare with same amounts of virgin metal, environmental-efficiency of GWP (Global Warming Potential) is at 4.16E + 00 and ARD(Abiotic Resource Depletion) is at 2.91E + 00. And compare with secondary metal, environmental-efficiency of GWP is at 2.11E + 00 and ARD is at 8.49E − 01. In addition economic-efficiency is at 1.19E + 00. The results of optimization of this process will be increased. This study will show the process economical and environmental decision making