The objective of this study was to make a SBR+MBR complex process to evaluate the possible use of the advanced water treatment system for ships (SBR+MBR complex process) in accordance with the amendments MAPOL 73/78 that went into effect. The conditions 1 and 2 did not show the quick reduction in anaerobic condition while in the precipitation and stirring stages of the SBR treatment which was determined to be ineffective denitrification, same as with the ORP. Removal of organic matters such as BOD5 and CODCr in the SBR treatment was observed to happen smoothly and going through the MBR treatment as well would provide a stable water quality. However, the results were not satisfactory in accordance with BOD5 25 mg/L and CODCr 125 mg/L. Thus, the operating conditions improvement is deemed necessary. Likewise for the nutrients (T-N and T-P), the nitrification in bioreactor, denitrification and phosphorus absorption in aerobic tank due to phosphorus release in anaerobic tank had not been proceeded effectively. It was concluded that the improved operating conditions and structural changes would provide more effective treatments since the removal rates of T-N and T-P were less than 70% and 80%, respectively, which were standards specified by the MEPC. 227(64).
There are two treatment processes that are currently applied to ships are the biological treatment process using the activated sludge and the electrochemical treatment. However, neither of them are able to remove both nitrogen and phosphorus due to their limited ability to remove organic matters, which are main causes of the red tide. This study was conducted to identify the characteristics of nitrogen removal factors from manure wastewater by replacing the final settling tank in SBR (Sequencing Batch Reactor) process and applying immersion type hollow fiber membrane. SBR process is known to have an advantage of the least land requirement in special environment such as in ship and the immersion type hollow fiber membrane is more stable in water quality change. As the result, the average in the cases of DO (Dissolved Oxygen) is 2.9(0. 6∼3.9) mg/L which was determined to be the denitrifying microorganism activity in anaerobic conditions. The average in the cases of ORP (Oxidation Reduction Potential) is 98.4∼237.3 mV which was determined to be the termination of nitrification since the inflection point was formed on the ORP curve due to decrease in the stirring treatment after the aeration, same as in the cases of DO. Little or no variation in the pH was determined to have positive effect on the nitrification. T-N (Total Nitrigen) removal efficiencies of the finally treated water were 71.4%, 72.3% and 66.5% in relatively average figures, thus was not a distinct prominence. In being applied in ships in the future, the operating conditions and structure improvements are deemed necessary since the MEPC (Marine Environment Protection Committee). 227(64) ship sewage nitrogen is less than the standard of 20 Qi/Qe mg/L or the removal rate of 70%.
본 연구는 폐 컴퓨터를 자원회수에 긍정적인 영향을 주고자 폐 컴퓨터(PCB)를 이용한 유가금속회수 공정에서 비중선별에 의한 분리 특성 및 금속함량에 관한 연구를 통해 효과적인 유가금속 회수를 위하는데 그 목적이 있다. 실험재료로 폐 컴퓨터(PCB)를 사용하였으며, PCB리드커터기를 이용해 PCB기판의 부착물 제거 후 고속분쇄기(1차분쇄) 및 미분쇄기(2차분쇄)를 이용하여 일정 크기에 따라 분쇄를 실시하였다. 분쇄물들은 체선별을 통해 입경크기별(n<0.2, 0.2<n<0.5, 0.5<n<1.0, 1.0<n<2.0 및 2.0<n)로 구분하여 중액분리를 실시하였다. 중액분리는 TBE(Tetrabromoethane)를 사용하였다. 5 min, 10 min, 15 min, 20 min 및 30 min의 시간을 주어 시간에 따른 비중선별 정도를 확인하였으며, 중액의 비중변화를 위해 희석액으로 에탄올을 사용해 비중액 비중(1.6, 1.85 및 2.1)을 변화시켜가며 실험을 진행하였다. 전체적인 비중선별 결과 비교시 비중 2.1과 1.85의 결과 값에서 큰 차이가 나타나지 않았으며, 경제적인 면으로 볼 때 비중 1.85가 적합하다고 판단되며, 플라스틱 및 산화물의 함량은 부유물에서 높은 것으로 나타남에 따라 유용금속의 및 기타금속의 함량은 침전물에서 높은 것으로 나타났다.
MEPC. 227(64)가 발의되면서 해상에서 선박 배출수의 오염에 대한 규제가 강화되었다. 특히 T-P에 대하여 유입수 대비 유출수의 제거율을 1.0 mg/L 또는 80%로 제한하고 있다. 이를 충족시키기 위해 SBR+MBR 공정을 적용하여 시험운전을 진행하였으며, 그에 따른 문헌조사 결과 생물학적 처리만으로 인의 목표 처리효율을 충족시키는 것에 한계가 있을 것으로 판단하여 응집제(PAC 5)를 도입하였다. 따라서 본 연구는 PAC 5를 이용한 응집공정 적용시 T-P의 제거율이 어떻게 변화하는지 연구하는 데에 그 목적이 있다. 실험에 사용된 원수는 실험을 위해 자체 제작한 화장실에서 발생된 오수를 사용하였으며 원수의 T-P 농도는 33.215 mg/L로 측정되었다. 실험은 총 3 사이클 동안 진행되었으며, SBR+MBR 공정을 거친 1차 유출수의 T-P 농도 및 제거율의 평균값과 PAC 5를 이용하여 응집공정까지 시행된 2차 유출수의 T-P 농도 및 제거율의 평균값을 비교하였다. 실험 결과 1차 유출수의 평균 T-P 농도는 15.05 mg/L로 유입수 대비 유출수가 70.8%의 제거율로 나타났고, 또한 2차 유출수의 경우 평균 농도 3.47 mg/L로 93.3%의 제거율로 나타났다. 실험을 통해 PAC 5를 적용한 응집공정을 실시하였을 때 T-P 평균 제거율이 22.5%가 상승한 것으로 확인되었다. 따라서 SBR+MBR 공정을 적용한 고도수처리장치에 있어서 PAC 5를 이용한 응집공정 적용은 긍정적인 것으로 판단된다.
본 연구는 수산양식업 활동에 의해 발생한 굴 패각 폐기물이 미처리야적 및 무단 투기되면서 악취, 환경위해성 및 연안환경악화 등의 문제를 해결하고, 낭비되는 자원인 굴 패각 폐기물의 재활용 방안 수립을 위한 기초자료를 제공하고자 한다. 실험에 사용된 시료는 부산광역시 강서구 용원동 일원에 미처리 야적된 굴 패각 폐기물을 직접 채취하여 사용하였다. 굴 패각 폐기물의 유기물 및 염분 등의 제거를 위하여 솔을 이용하여 수세척한 뒤, 105℃에서 24시간 건조하였다. 소성공정은 온도(600~1,200℃) 및 시간변화(1~6시간)를 주면서 실험하였으며, 소성한 굴 패각을 분쇄하여 입도분리 공정을 통해 100 mesh 이하로 체 거름 하였다. 그 결과 최적 소성조건은 CaO 함량 및 기타불순물 함량에 의해 900℃ 2시간으로 나타났으며, 개발된 재생석회를 이용하여 광산폐수의 중금속 제거를 위한 Jar-test를 이용한 회분식 흡착실험을 진행하였다. 광산폐수 주입량은 300 mL로 하였고 재생석회 주입량(3~9 g) 및 교반시간(10~120분) 변화에 따른 pH 및 중금속(As, Zn, Pb, Fe 및 Cu) 분석을 하였다. 광산폐수 원수의 pH는 3.08로 나타났으며, 중금속 중 As 불검출, Zn 10.89 mg/L, Cd 0.16 mg/L, Pb 0.10 mg/L, Fe 70.52 mg/L 및 Cu 13.00 mg/L로 나타났다. Jar-test를 통한 흡착실험 결과, 최적 흡착실험조건은 재생석회 주입량 7 g, 교반시간 10분으로 나타났으며, 이때 광산폐수 pH는 12.80, As 불검출, Zn 0.31 mg/L, Cd 불검출, Pb 불검출 mg/L, Fe 0.02 mg/L 및 Cu 불검출 되었다. 이와 같이, 본 연구에서는 굴 패각 폐기물의 재활용 방안 중 석회로서 수처리제로의 광산폐수 처리에 주안점을 두고 연구를 진행하였으며, 향후 보다 많은 재활용 방안에 대한 연구가 진행된다면 굴 패각 폐기물에 의한 연안환경 악화 개선 및 낭비되는 자원의 재사용이 가능할 것으로 판단된다.
The main objective of this study is to recovery valuable metals with metal particle size distributions in waste cell phone PCBs(Printed Circuit Boards) by means of pulverization and nitric acid process. The particle size classifier also was evaluated by specific metal contents. The PCBs were pulverized by a fine pulverizer. The particle sizes were classified by 5 different sizes which were PcS1(0.2 mm below), PcS2(0.20~0.51 mm), PcS3(0.51~1.09 mm), PcS4(1.09~2.00 mm) and PcS5(2.00 mm above). Non-magnetic metals in the grinding particles were separated by a hand magnetic. And then, Cu, Co and Ni were separated by 3M nitric acid. Particle diameter of PCBs were 0.388~0.402 mm after the fine pulverizer. The sorting coefficient were 0.403~0.481. The highest metal content in PcS1. And the bigger particle diameter, the lower the valuable metals exist. The recovery rate of the valuable metals increases in smaller particle diameter with same leaching conditions. For further work, it could improve to recovery of the valuable metals effectively by means of individual treatment, multistage leaching and different leaching solvents.
This objectives of research are to figure out combustion characteristics with increasing temperature with petrochemical sludge by adding wasted organic matters which are waste electric wire, anthracite coal and sawdust, and to exam heating value and ignition temperature for using refused derived fuels(RDFs). After analyzing TGA/DTG, petrochemical sludge shows a rapid weight reduction by vaporing of inner moisture after 170℃. Gross weight reduction rate, ignition temperature and combustion rates represent 68.6%, 221.9℃ and 54.1%, respectively. In order to assess the validity of the RDFs, the petrochemical sludge by adding wasted organic matters which are waste electric wire, anthracite coal and waste sawdust. The materials are mixed with 7:3(petrochemical sludge : organic matters)(wt%), and it analyzes after below 10% of moisture content. The ignition temperatures and combustion rates of the waste electric wire, anthracite coal and waste sawdust are 410. 6℃, 596.1℃ and 284.1℃, and 85.6%, 30.7% and 88.8% respectively. In heating values, petrochemical sludge is 3,600 kcal/kg. And the heating values of mixed sludge (adding 30% of the waste electric wire, anthracite coal and waste sawdust) each increase up to 4,600 kcal/kg, 4,100 kcal/kg and 4,300 kcal/kg. It improves the ignition temperatures and combustion rates by mixing petrochemical sludge and organic matters. It is considered that the production of RDFs is sufficiently possible by using of petrochemical sludge by mixing wasted organic matters.
본 연구는 하수슬러지의 플록상태를 파악할 수 있는 응집제 자동투입장치를 탈수기 전단에 장착하여 하수슬러지(소화슬러지, 농축슬러지) 플록상태에 따른 고분자 응집제 주입량을 다르게 함으로써 탈수케이크의 함수율 저감 및 응집제 사용량 절감, 탈수여액의 수질개선 등을 평가하는데 그 목적이 있다. 응집제 자동투입장치를 B시 N하수처리장 소화슬러지 및 S하수처리장 농축슬러지에 적용한 결과 고속회전 및 응집제 분사를 통한 균일한 플록이 형성됨에 따라 탈수케이크 함수율 및 응집제 주입율 저감효과를 나타내었다. 하수슬러지의 탈수실험 결과 소화슬러지에 대한 고분자 응집제의 적정주입율은 12%로 나타났으며, 이때의 비저항계수(SRF)는 1.11×1011 m/kg으로 나타났다. 또한, 농축슬러지에 대한 고분자 응집제의 적정주입율은 16%로 나타났으며, 이때의 비저항계수(SRF)는 1.68×1011 m/kg으로 나타났다. 또한 응집제 자동투입장치의 회전속도와 유입 하수슬러지량 대비 고분자 응집제 주입율과의 상관관계를 평가한 결과 회전속도를 900~1,200 rpm의 범위 내에서 운전시 플록형성이 양호하게 나타났다. 기존 시스템 대비 응집제 자동투입장치의 경제성 평가 결과 N하수처리장 및 S하수처리장의 경우 각각 연간 263,542,490원 및 42,174,700원으로 산출되었으며, 시설투자비 회수기간은 각각 2.3년 및 7.1년으로 나타났다. 따라서, 하수처리장 탈수기 전단에 응집제 자동투입장치를 적용함으로써 함수율 및 약품주입량 저감 뿐만 아니라 중앙제어실을 통한 실시간 모니터링이 가능하므로 인력감축 유도 및 공정자동화에도 기여할 수 있을 것으로 판단된다.
Haloacetic acids (HAAs) concentrations have been observed to decreased at drinking water distribution system extremities. This decrease is associated with microbiological degradation by pipe wall biofilm. The objective of this study was to evaluate HAAs degradation in a drinking water system in the presence of a biofilm and to identify the factors that influence this degradation. Degradation of monochloroacetic acid (MCAA), dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) was observed in a simulated distribution system. The results obtained showed that different parameters came into play simultaneously in the degradation of HAAs, including retention time, water temperature, biomass, and composition of organic matter. Seasonal variations had a major effect on HAAs degradation and biomass quantity (ATP concentration) was lower by 25% in the winter compared with the summer.
본 연구는 수자원의 효과적인 활용하기 위해 하수처리장 방류수를 이용하여 막분리 공정을 적용하고, 생산된 Eco-Water(하수처리수 재이용수)를 인근 산업체에 공급하기 위해 수질 및 수량특성 등 파악하여 공업용수로의 활용에 관한 타당성을 검토하였다. 실험에 사용된 재이용수는 B시 N사업소의 하수처리장 방류수를 대상으로 실시하였다. 대상 하수처리장 사업소의 경우 인근에 대규모 산업단지가 소재하고 있으며, 낙동강 하류에 위치하여 상대적으로 유입수질의 시간에 따른 변동이 심한 것으로 나타났다. 하수처리장 방류수를 이용한 Eco-Water 생산 공정은 BF(Birmfilter)-UF(Ultrafilter)-RO(Reverse osmosis) 공정으로 운전하였으며, UF는 H사의 PVDF 중공사막, RO는 N사 ESPA로 구성하여 Eco-Water Pilot plant를 제작하였다. 운전조건은 하수처리장 방류수 유입량 약 4.0 m₃/hr, 생산수량 3.0 m₃/hr 및 농축수량 1.0 m₃/hr로 기준으로 설계하였고, 처리공정으로는 공업폐수 중 중금속(철 및 망간) 유입이 많을 것으로 판단되어 전처리 공정에 BF를 설치하여 UF와 RO의 생산수질의 안정화 및 module별 유입부하량을 감소시켜 운전하였다. 운전에 앞서 공급대상 사업체의 요구수질을 조사하여 연구에 임하였으며, 운전결과 목표수질인 탁도 0.2 NTU 이하, 총 용존고형물 90.0 mg/L 이하, 경도 5.0 mg CaCo₃/L 이하, 전기전도도 150.0 μS/cm 이하, M-알칼리도 20.0 mg CaCo₃/L 이하, 염소이온 50.0 mg/L 이하, 실리카 2.0 mg/L 이하, 철 0.05 mg/L 이하 및 망간 0.05 mg/L 이하를 모두 만족 하였다. 또한, 동절기에도 수온은 15℃ 이상으로 일정하게 유입되어 유입수 온도감소에 따른 운전효율 감소는 거의 나타나지 않았으며, 하수처리장 방류수를 이용한 Eco-Water 공업용수 생산 및 공급이 가능할 것으로 판단된다.
The objectives of this study are to examine the processing of oils contamination soil by means of using a micronano-bubble soil washing system, to investigate the various factors such as washing periods, the amount of micro-nano bubbles generated depending on the quantity of acid injection and quantity of air injection, to examine the features involved in the elimination of total petroleum hydrocarbons (TPHs) contained in the soil, and thus to evaluate the possibility of practical application on the field for the economic feasibility.
The oils contaminated soil used in this study was collected from the 0~15 cm surface layer of an automobile junkyard located in U City.
The collected soil was air-dried for 24 hours, and then the large particles and other substances contained in the soil were eliminated and filtered through sieve No.10 (2 mm) to secure consistency in the samples. The TPH concentration of the contaminated soil was found to be 4,914~5,998 mg/kg.
The micronano-bubble soil washing system consists of the reactor, the flow equalization tank, the micronano- bubble generator, the pump and the strainer, and was manufactured with stainless material for withstanding acidic phase.
When the injected air flow rate was fixed at 2 L/min, for each hydrogen peroxide concentrations (5, 10, 15%) the removal percents for TPH within the contaminated soil with retention times of 30 minutes were respectively identified as 4,931 mg/kg (18.9%), 4,678 mg/kg (18.9%) and, 4,513 mg/kg (17.7%). And when the injected air flow rate was fixed at 2 L/min, for each hydrogen peroxide concentrations (5, 10, 15%) the removal percents for TPH within the contaminated soil with retention times of 120 minutes were respectively identified as4,256 mg/kg (22.3%), 4,621 mg/kg (19.7%) and 4,268 mg/kg (25.9%).
The objectives of this research are to evaluate and compare the oxygen transfer coefficients(KLa) in both a general bubbles reactor and a micro-nano bubbles reactor for effective operation in sewage treatment plants, and to understand the effect on microbial kinetic parameters of biomass growth for optimal biological treatment in sewage treatment plants when the micro-nano bubbles reactor is applied. Oxygen transfer coefficients(KLa) of tap water and effluent of primary clarifier were determined. The oxygen transfer coefficients of the tap water for the general bubbles reactor and micro-nano bubbles reactor were found to be 0.28 hr -1 and 2.50 hr -1 , respectively. The oxygen transfer coefficients of the effluent of the primary clarifier for the general bubbles reactor and micro-nano bubbles reactor were found be to 0.15 hr -1 and 0.91 hr -1 , respectively. In order to figure out kinetic parameters of biomass growth for the general bubbles reactor and micro-nano bubbles reactor, oxygen uptake rates(OURs) in the saturated effluent of the primary clarifier were measured with the general bubbles reactor and micro-nano bubbles reactor. The OURs of in the saturated effluent of the primary clarifier with the general bubbles reactor and micro-nano bubbles reactor were 0.0294 mg O2/L․hr and 0.0465 mg O2/L․hr, respectively. The higher micro-nano bubbles reactor's oxygen transfer coefficient increases the OURs. In addition, the maximum readily biodegradable substrate utilization rates(Kms) for the general bubbles reactor and micro-nano bubbles reactor were 3.41 mg COD utilized/mg active VSS․day and 7.07 mg COD utilized/mg active VSS․day, respectively. The maximum specific biomass growth rates for heterotrophic biomass(μmax) were calculated by both values of yield for heterotrophic biomass(YH) and the maximum readily biodegradable substrate utilization rates(Kms). The values of μmax for the general bubbles reactor and micro-nano bubbles reactor were 1.62 day -1 and 3.36 day -1 , respectively. The reported results show that the micro-nano bubbles reactor increased air-liquid contact area. This method could remove dissolved organic matters and nutrients efficiently and effectively.