The lay outs in this thesis is based on basic theories and the test the performance of the product by wind tunnel test and vehicle test. Furthermore, in order to find out the effect of structure change on hub which is one of the components of wind turbine, I compared the actual performance between the existing model and the modified model thoroughly. To improve the performance of wind turbine, I modify the structure of the hub and analysing base model and modify model by using Star-CCM+. As a result, I found out the wing-shaped hub used model stablizes the spin in shorter time than existing model. Therefore, with the optimal blade selection, the structure modification on hub is a considerable variable on wind turbine design which is aiming better performance.
본 연구에서는 바람의 방향이 시시각각 변하고 바람의 세기가 해양이나 고지대에 비하여 낮은 도심지역에 적합한 수직축 고효율 풍력발전시스템에 적용할 블레이드의 형상제안 및 정지기동특성에 대한 이차원해석을 하였다. 해석에 사용된 블레이드 형태는 NACA airfoil(NACA 2312)을 기본으로 하고, 변형된 모델들에 대해 조사하였다. 그 결과 일반적으로 풍속이 증가함에 따라서 토크 값은 지수함수의 형태와 유사하게 증가함을 알 수 있었다. 또한 6케이스 중 플랩이 없는 블레이드 2 타입이 가장 높은 토크값을 나타내었으며, 블레이드 1 타입의 경우는 30° 플랩을 부착한 경우가 가장 우수하였다.
본 연구에서는 개발된 선미부에 수직날개를 부착한 선박의 조파저항성능을 예측할 수 있는 수치해석기법의 검증에 관한 것이다. 수치해석기법은 비점성 유동장 해석기법인 랜킨소오스 패널법과 와류격자법을 사용하여 개발하였으며, 자유수면 경계조건의 비선형성은 반복해법을 사용하여 만족시켰고, 선박의 트림과 침하량을 구하는 알고리즘을 포함하고 있다. 수치해석을 위한 선체표면의 패널을 생성하기 위하여 패널절단법을 사용하였다. 4000TEU 컨테이너 운반선을 대상 선박으로 하여 선미부 6개소의 서로 다른 위치에 수직날개를 부착하여 수치해석을 수행하였으며, 수치해석기법의 타당성을 검증하기 위하여 상용 점성 유동장 해석 프로그램인 FLUENT를 사용하여 선체 주위의 점성 유동장을 계산하였고, 모형시험을 수행하여 얻은 실험 결과를 수치해석 결과와 서로 비교하였다.