In this study, a model-referenced underwater navigation algorithm is proposed for high-precise underwater navigation using monocular vision near underwater structures. The main idea of this navigation algorithm is that a 3D model-based pose estimation is combined with the inertial navigation using an extended Kalman filter (EKF). The spatial information obtained from the navigation algorithm is utilized for enabling the underwater robot to navigate near underwater structures whose geometric models are known a priori. For investigating the performance of the proposed approach the model-referenced navigation algorithm was applied to an underwater robot and a set of experiments was carried out in a water tank.
This paper presents a localization system using ceiling images in a large indoor environment. For a system with low cost and complexity, we propose a single camera based system that utilizes ceiling images acquired from a camera installed to point upwards. For reliable operation, we propose a method using hybrid features which include natural landmarks in a natural scene and artificial landmarks observable in an infrared ray domain. Compared with previous works utilizing only infrared based features, our method reduces the required number of artificial features as we exploit both natural and artificial features. In addition, compared with previous works using only natural scene, our method has an advantage in the convergence speed and robustness as an observation of an artificial feature provides a crucial clue for robot pose estimation. In an experiment with challenging situations in a real environment, our method was performed impressively in terms of the robustness and accuracy. To our knowledge, our method is the first ceiling vision based localization method using features from both visible and infrared rays domains. Our system can be easily utilized with a variety of service robot applications in a large indoor environment.
This paper describes a new method for indoor environment mapping and localization with stereo camera. For environmental modeling, we directly use the depth and color information in image pixels as visual features. Furthermore, only the depth and color information at horizontal centerline in image is used, where optical axis passes through. The usefulness of this method is that we can easily build a measure between modeling and sensing data only on the horizontal centerline. That is because vertical working volume between model and sensing data can be changed according to robot motion. Therefore, we can build a map about indoor environment as compact and efficient representation. Also, based on such nodes and sensing data, we suggest a method for estimating mobile robot positioning with random sampling stochastic algorithm. With basic real experiments, we show that the proposed method can be an effective visual navigation algorithm.