Recently, smart factories have attracted much attention as a result of the 4th Industrial Revolution. Existing factory automation technologies are generally designed for simple repetition without using vision sensors. Even small object assemblies are still dependent on manual work. To satisfy the needs for replacing the existing system with new technology such as bin picking and visual servoing, precision and real-time application should be core. Therefore in our work we focused on the core elements by using deep learning algorithm to detect and classify the target object for real-time and analyzing the object features. We chose YOLO CNN which is capable of real-time working and combining the two tasks as mentioned above though there are lots of good deep learning algorithms such as Mask R-CNN and Fast R-CNN. Then through the line and inside features extracted from target object, we can obtain final outline and estimate object posture.
In this paper, we introduce visual contexts in terms of types and utilization methods for robust object recognition with intelligent mobile robots. One of the core technologies for intelligent robots is visual object recognition. Robust techniques are strongly required since there are many sources of visual variations such as geometric, photometric, and noise. For such requirements, we define spatial context, hierarchical context, and temporal context. According to object recognition domain, we can select such visual contextx. We also propose a unified framework which can utilize the whole contexts and validates it in real working environment. Finally, we also discuss the furture research directions of object recognition technologies for intelligent robots.