보행보조로봇은 고령화 사회에 노인 복지 및 중증 신경계 손상을 입은 환자에게 이동을 도울 수 있는 반드시 필요한 장비이다. 특히, 하지 마비 환자를 위한 보행보조로봇의 편리성을 위해서는 환자의 보행 의도를 내현적으로 파악함으로써 환자 의지에 따라 로봇을 통제할 수 있어야 한다. 본 논문은 보행 의도 감지 모델을 개발하기 위한 선행 연구로, 먼저 저항 센서와 기울기 센서의 융합을 통하여 3족 보행 모델을 기반으로 사용자의 보행 의도를 분석하였다. 저항 센서는 사용자의 양쪽 손바닥과 발바닥에 각각 부착되어, 부착된 위치의 압력을 센싱하였다. 양쪽 손바닥의 신호는 보행 의도를 파악하기 위해, 발바닥의 신호는 보행 단계를 확인하기 위하여 사용되었다. 기울기 센서는 몸의 움직임 상태를 측정하기 위한 센서로서, 사용자의 등 부분, 요추에 부착되어 상체의 움직임(roll, pitch)을 센싱하였다. 연구 결과, 사용자가 지팡이를 바닥에 짚을 때 양 손바닥에서 측정되는 2개의 저항 신호만으로 기본적인 보행 의도를 파악할 수 있었으나, 기울기 센서 정보를 함께 이용함으로써 오른발 뻗기, 왼발 뻗기 등의 움직임을 시작하려는 상태 등에 대한 보행 의도를 보다 구체적으로 확인할 수 있었다. 결론적으로, 본 연구를 통하여 저항센서와 기울기 센서의 융합에 기반한 사용자의 보행 의도를 감지할 수 있었다.
Recently, smart factories have attracted much attention as a result of the 4th Industrial Revolution. Existing factory automation technologies are generally designed for simple repetition without using vision sensors. Even small object assemblies are still dependent on manual work. To satisfy the needs for replacing the existing system with new technology such as bin picking and visual servoing, precision and real-time application should be core. Therefore in our work we focused on the core elements by using deep learning algorithm to detect and classify the target object for real-time and analyzing the object features. We chose YOLO CNN which is capable of real-time working and combining the two tasks as mentioned above though there are lots of good deep learning algorithms such as Mask R-CNN and Fast R-CNN. Then through the line and inside features extracted from target object, we can obtain final outline and estimate object posture.
This paper presents the concept for the development of a pet-type robot with an emotion engine. The pet-type robot named KOBIE (KOala roBot with Intelligent Emotion) is able to interact with a person through touch. KOBIE is equipped with tactile sensors on the body for interaction with a person through recognition of his/her touching behaviors such as “Stroke”,“Tickle”,“Hit”. We have covered KOBIE with synthetic fur fabric in order to can make him/her feel affection as well. KOBIE is able to also express an emotional status that varies according to the circumstances under which it is presented. The emotion engine of KOBIE's emotion expression system generates an emotional status in an emotion vector space which is associated with a predefined needs and mood models. In order to examine the feasibility of our emotion expression system, we verified a changing emotional status in our emotion vector space by a touching behavior. We specially examined the reaction of children who have interacted with three kind of pet-type robots: KOBIE, PARO, AIBO for roughly 10 minutes to investigate the children's preference for pet-type robots.