When a bellows is subjected to various deformation conditions such as angular rotation, axial displacement or lateral deflection, the stress is produced at each convolution. These deformations play a significant role in the analysis of strength. Because of geometric complex, it is difficult to analyze the mechanical behavior of bellows. The symmetrical deformation problems of the bellows have been discussed in the study. These problems were investigated by the finite element method. The bellows was meshed with 8 node shell elements and elastic analysis was performed. The mesh consists of 112,800 elements and the lateral deflection from 0 to 21mm, the axial displacement from 0 to 6mm and the angle of rotation from 0 to 0.21 degree was applied at the end cap for the boundary condition. The effects of boundary conditions such as the angle of rotation and the lateral deflection on the stress concentration for the bellows was studied. In addition, the relationship between minimum von-Mises stress and angle of rotation and deflection of bellows was obtained