지난 50여 년간의 연구를 통해서 와류진동의 발생메커니즘과 폭 넓은 이해를 위한 수학적 모델이 제시된바 있으나 대부분 실 험적 고찰과 경험적 모델에 기반한 현상학적인 접근이 주로 이루어졌다. 와류진동과 그에 수반된 독특한 현상, 유체의 흐름과 구조물의 상호작용에 내포되어 있는 복합성과 난해성은 지금도 많은 연구자들의 관심을 불러일으키고 있으며, 와류진동에 대한 원초적인 발생원인 규명에 대한 새로운 도전이 지속적으로 제기되고 있다. 본 연구에서는 하중식별법에 의해 와류하중을 직접 추출하고 스펙트럼 형상분석을 통하여 와류하중을 구성하는 요소하중을 도출하는 과정을 보였다. 와류진동을 구성하는 요소하중은 구조물의 속도가 공력 감쇠에 의하여 피드백되는 하중, 와의 발생에 의한 하중(스트로할 성분에 의한 순수와류하중), 풍직각방향 버펫팅 하중으로 구분됨을 알 수 있었다. 각 요소 하중이 구조물 응답에 미치는 영향을 분석하여 본 연구에서 제시된 와류하중 모델도출법의 정합성을 보임으로서, 모델 구축방법의 타당성을 제시하였다. 이들 요소하중에 대한 정량적인 수학적 모델의 정립을 위해서는 피드백하중의 공력감쇠예측, 순수와류하중 스펙트럼의 정량적인 분포와 그 크기 예측, 버펫팅 하중의 스펙트럼 성상 예측이 이루어져야 한다. 이를 위해 풍동실험, 실계측과 같은 현상학적인 접근방법과 유체 흐름의 정형화된 수학적 모델인 나비에-스톡스 방정식과 연계된 CFD 해석을 병행하여 와류하중을 구성하는 요소하중들에 대한 정량화된 수학적 모델의 정립이 요구된다.
기류흐름에 의한 다양한 진동현상이 구조물에 발생한다. 이중 와류에 의한 진동은 구조물의 고유진동수와 일치하는 와류의 방출진동수에서는 Lock-in 현상에 의해 큰 진동을 유발하며 구조물에 많은 영향을 미치는 것으로 알려져 있다. 그러나 대부분의 와류 현상은 등류에서 관찰되는 현상을 대상으로 이루어졌다. 본 연구에서는 대기 경계층에서 높이에 따라 풍속이 변화하는 난류에 의하여 구조물에 발생하는 와류의 영향을 풍동실험을 통하여 평가하였다. 탄성체 모형실험으로부터 계측된 가속도로부터 하중추정법을 이용 하여 와류진동을 발생시키는 1차 모드 와류하중을 추정하였으며 그 특성을 분석하였다. 추정된 와류하중의 스펙트럼을 보면 구조물 최상층 풍속의 약 88-90%에 해당하는 풍속에서 와류방출진동수가 두드러지게 나타나면서 피크를 형성하는 것으로 나타났다. 또한, 풍 속이 점차 증가할수록 와류하중의 스펙트럼의 진동수범위가 증가하는 것으로 나타났다. 이러한 난류에 의한 와류하중을 특성을 반영 하면 초고층 구조물 등에 발생하는 풍직각 방향의 진동현상을 보다 효과적으로 파악하는데 활용될 수 있을 것으로 사료된다.