검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2013.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        이 연구의 목적은 한반도에서 CH4 농도의 수치모의 검증을 통하여 CH4 배출원의 기여 농도를 추정하는 것이고, 이 수치모의에 사용된 CH4 배출량을 상자모델로부터 추정된 CH4 배출량과 비교하는 것이다. 한반도에서 2010년 4월 1일부터 8월 22일까지 CH4의 평균 농도를 추정하기 위해 WRF-CMAQ 모델이 사용되었다. 모델에서 CH4 배출량은 전지구 배출량인 EDGAR와 한국에서의 온실기체 배출량인 GHG-CAPSS로부터 인위적 배출 인벤토리와 전지구 자연적 인벤토리인 MEGAN이 적용되었다. 이들 CH4 배출량은 안면도 및 울릉도에서 측정된 CH4 농도와 모델링 농도 자료를 비교함으로써 검증되었다. 울릉도에서 국내 배출원으로부터 추정된 CH4의 기여 농도는 약 20%로 나타났고, 이것은 한반도 내 농장(8%), 에너지 기여 및 산업공정(6%), 일반폐기물(5%), 생체 및 토지이용(1%) 등 CH4 배출원으로부터 기원하였다. 그리고 중국으로부터 수송된 CH4의 기여 농도는 약 9%였고, 나머지 배경농도는 약 70%로 나타났다. 박스모델로 추정된 CH4 배출량은 WRF-CMAQ 모델에서 사용한 CH4 배출량과 유의미한 결과를 얻었다.
        4,800원
        2.
        2011.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 한반도 황사 사례 동안 WRF 기상모델과 SMOKE 배출량모델, CMAQ 및 CMAQ-MADRID 대기질 모델을 이용하여 다양한 황사 발생량 경험식에 대한 PM10의 농도를 추정하였다. 특별히 Wang et al.(2000), US EPA 모델, Park and In(2003), GOCART 모델, DEAD 모델의 5가지 황사 발생 경험식이 중국과 몽골 등의 황사 발생량을 추정하기 위해 WRF-SMOKE-CMAQ(MADRID) 모델에 적용되었다. 일기도, 후방궤적 및 위성이미지 분석에 따르면 한반도로의 황사 수송은 절리저기압(위성에서 콤마형 구름)과 관련된 지상 전선의 뒤쪽에서, 그리고 상층 제트류의 발달에 기인한 파의 정체현상과 함께 상층 골에서의 풍속이 하층으로 전이되는 풍하 바람에 의해 생성되었다. 그리고 WRF-SMOKE-CMAQ 모델링 결과, 황사의 시 공간적 분포에 있어서는 Wang et al.(2000)의 경험식이, 평균 편의 및 평균 제곱근 오차에서의 정확도 부분에서는 GOCART 모델의 경험식이 관측값을 보다 잘 모사하는 것으로 나타났다. 또한 Wang et al.의 경험식을 이용한 황사의 연직분포 분석 결과에서 강한 황사 사례(2007년 3월 31에서 4월 1일 800 μg/m3 이상)의 경우는 황사 수송이 한반도 상공 대기 경계층 내를 통과하였기 때문으로, 약한 황사 사례(2009년 3월 16일과 17에 400 μg/m3 이하)의 경우는 황사 수송이 경계층 위를 통과하였기 때문으로 나타났다. 또한 CMAQ 모델과 CAMQ-MADRID 모델에서의 미세먼지(PM10) 민감도 분석 결과에서는 CMAQ-MADRID 모델이 CMAQ 모델에 비해 한반도를 포함한 동아시아 지역에서 최대 25 μg/m3 정도가 높게 모사되었고, 모델 내 구름 액상과정에 의해서는 최대 15 μg/m3 정도가 제거되는 것으로 나타났다.
        5,200원
        3.
        2018.08 KCI 등재 서비스 종료(열람 제한)
        In this study, to investigate an optimal configuration method for the modeling system, we performed an optimization experiment by controlling the types of compilers and libraries, and the number of CPU cores because it was important to provide reliable model data very quickly for the national air quality forecast. We were made up the optimization experiment of twelve according to compilers (PGI and Intel), MPIs (mvapich-2.0, mvapich-2.2, and mpich-3.2) and NetCDF (NetCDF-3.6.3 and NetCDF-4.1.3) and performed wall clock time measurement for the WRF and CMAQ models based on the built computing resources. In the result of the experiment according to the compiler and library type, the performance of the WRF (30 min 30 s) and CMAQ (47 min 22 s) was best when the combination of Intel complier, mavapich-2.0, and NetCDF-3.6.3 was applied. Additionally, in a result of optimization by the number of CPU cores, the WRF model was best performed with 140 cores (five calculation servers), and the CMAQ model with 120 cores ( five calculation servers). While the WRF model demonstrated obvious differences depending on the number of CPU cores rather than the types of compilers and libraries, CMAQ model demonstrated the biggest differences on the combination of compilers and libraries.