검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2017.12 KCI 등재 서비스 종료(열람 제한)
        Insulation materials used for building save energy and can be classified into inorganic and organic materials. Organic insulation emits toxic gases in a fire and has lower water resistance. Inorganic insulation is heavy and has poorer thermal performance than that of organic material. This study evaluated the physical properties and fire resistance of lightweight inorganic insulation foaming material made of waste glass powder. The test results showed that the inorganic material performed well with low density and low thermal conductivity for an insulation material. Foam insulation material manufactured from glass powder was sufficient as a fire-resistant product.
        2.
        2017.03 KCI 등재 서비스 종료(열람 제한)
        The paper industry requires continuous automation of processes ranging from injection of raw materials to initial paper processes and final processing. Thus, it is a capital- and equipment-intensive industry that requires large investments in facilities and consumes significant amounts of energy for production. Since the concept of a 'Waste Minimization and Sustainable Resource Circulation Society' is key waste management policy, the effective use of waste has been emphasized. To this end, there is significant research on energy conversion in waste incineration plants. Domestically, there is a desire to review and improve sustainable technology development systems in order to maximize thermal energy recovery in waste incineration plants. Therefore, this study compared the energy recovery rate calculation methods currently used in eight paper industry incineration plants. The lower heating value and energy recovery & use rate calculation methods were applied in accordance with the “waste resource energy recovery & use calculation method” located in Paragraph 2 of Article 3 in the Enforcement Decree of the “Wastes Control Act” of 2015. Calculations made using the current method (on the basis of output) showed an average energy recovery rate of 78.6% (75.5 ~ 82.8%), whereas the waste resource energy recovery & use rate calculation method (based on volume used) produced an energy recovery rate of 53.3% (42.5 ~ 74.8%).
        3.
        2016.11 서비스 종료(열람 제한)
        염색가공 공정 중 텐터 후처리 과정은 섬유에 다양한 기능성을 부여하기 위해 화학약품 처리 후 건열에 의한 섬유의 셋팅을 하는 단계로 건조에 필요한 고온의 열원이 필요로 한다. 고온의 열원에 의해 기계작동을 위한 윤활유가 증발되면서 유증기(Oil-mist)형태와 각종 첨가제에서 증발된 오염성분이 함께 배출되게 된다. 또한 열원 에너지 특성상 150~160℃ 고온의 폐열이 상당량 발생한다. 염색가공 산업의 에너지 비용은 제품가격의 상승을 가져오고 있으며 이에 따른 저인금 개발도상국간의 경쟁력 저하를 발생시키고 있어 배기되는 폐열을 회수/재이용을 하는 시스템 도입이 시급한 과제이다. 기존 텐터후단에서 발생되는 폐열을 회수하기 위한 연구사례가 있지만 배기가스 중 함유된 분진 및 폐유로 인한 열교환 모듈의 폐쇄에 따른 열교환 효율 미비로 성공적인 상용화 모델이 없는 실정이다. 이를 해결하고자 섬유업종 텐터 후단에서 발생되는 고온의 배기가스를 전단 열교환식 스크라바와 건식전기집진 기술을 접목하여 폐열 회수와 동시에 악취유발물질인 폐유를 회수하고 회수 된 폐유는 정제연료유로써 재활용 가능성을 평가하였다. 본 연구를 위해 400CMM 규모의 열교환 스크라바 건식전기집진 시설을 부산에 위치한 ‘D’사의 염색가공업체에 설치하여 폐열에너지 회수량, 폐유 회수량, 회수된 폐유의 총발열량등을 평가 하였다. 평가 기술 적용대상 업체는 합섬 섬유(폴리에스테르)원료로 해포, 염색, 가공 등의 공정을 거쳐 염색된 화학섬유를 제품으로 생산하는 염색 가공업체로 360 m3 용량의 텐터 1대를 보유 하고 있다. 기존 개발된 건식전기집진시설의 낙모와 폐유로 인한 집진모듈의 오염으로 인한 관리 어려움을 개선하기 위한 열교환식 스크라바를 적용 하여 부산 염색공단내 보급화에 성공하였다. 운전 성능 평가 결과 회수되는 폐유는 0.032 L/m3・hr으로 평균 수분량 8.1~8.2%의 양질의 폐유를 회수 하였으며 발열량은 100,444 kcal/kg으로 B-C유 발열량과 유사 하였다. 배기가스에서 회수된 폐열(에너지)회수량은 평균 발생량 대비 67%인 16 kcal/m3・hr이며 암모니아와 톨루엔의 제거효율 70%이상의 우수한 결과를 나타냈다.