This study aims to optimize the SDC (Spinning Dust Collector) system in amphibious assault vehicle engines through numerical analysis of dust and moisture particle separation efficiency using CFD-DPM. Focusing on an axial cyclone structure, the research evaluates separation efficiency across various particle sizes and flow conditions. The results demonstrate that vortices generated by cyclone blades play a critical role in influencing particle trajectories and improving separation performance. Additionally, the study highlights the significant impact of engine flow conditions and housing design, emphasizing that their careful optimization enhances the system's efficiency in separating dust and water. These findings offer valuable insights into optimizing inlet and outlet flow paths and cyclone housing design, providing a solid foundation for advancing SDC system performance in high-efficiency engines.
In this study, the flow by impingement at water dust collector with movable nozzle was analyzed by computational fluid technique. The velocity and vorticity of the dust collector were compared by positioning the nozzle to up and down. Also, the mean velocity were compared through three specific locations that were the diffuser inlet, movable nozzle surface and dust collector outlet. It can be checked that the vorticity and velocity magnitude are verified by the fluid solver of Fluent. As the result of this study, the movable nozzle located at 4cm down from initial position of the nozzle shows the great characteristics of vorticity and velocity distribution for dust collection.