As buildings are becoming larger, demand for large-scale composite columns for heavy load is increasing. Welded built-up CFT column (ACT Column I) previously developed by authors of this study is structurally stable and economical. Characteristic of welded built-up CFT column is that there is a limitation of cross-sectional size and application of external diaphragm connection to ensure continuity of rib. Then, composite mega column (ACT Column II) was developed to improve limit of cross-sectional size. Composite mega column has a closed cross section like welded built-up CFT column, but thick plate is inserted between cold-formed steel to expand cross section size. However, when external diaphragm connection is applied to composite mega column, amount of steel is increased greatly and interference with finishing material occurs. In this study, internal diaphragm connection is applied through characteristic of composite mega column to which beam flange or stiffener can be attached to plate. In order to analyze this, simple tensile experiment of composite mega column connection with T-shaped stiffener was performed.
So far, square concrete filled tubular(CFT) columns have been used in a limited width thickness ratio. The reason is that local buckling occurs in steel tube easily. Once the local buckling occurs, the confinement effect of steel tube on concrete disappears. In this study, we developed welded built-up square steel tube with reinforcement which are placed at the center of the tube width acts as an anchor. 3 specimens of slender welded built-up square CFT columns and 3 specimens of slender welded built-up square steel tube columns were manufactured with parameters of width(B) of steel tube, width thickness ratio(B/t). we conducted a experimental test on the 6 specimens under eccentric load, and evaluated the structural resistance and behavior of 6 specimens.
CFST columns are structurally superior because the concrete inside the steel tubes prevents local buckling at the tubes and the tubes confine the concrete. And, the thickness of steel tube in CFST column has been thinner with development of high-strengh steel. The thinner the steel tube of a square CFST column is, the more local buckling is likely to occur. For this reason, we developed welded built-up square steel tube with stiffeners which are placed at the center of the tube width acts as an anchor. In this study, we conduct experimental test for three specimens of the 4m long span welded built-up square CFT column with parameters of L/D and D/t. And, the test results were compared with the analysis results by M-ϕ-P Program.