Radioactive waste generated during nuclear power plant decommissioning is classified as radioactive waste before the concentration is identified, but more than 90% of the amount generated is at a level that can be by clearance. However, due to a problem in the analysis procedure, the analysis is not carried out at the place of on-site but is transported to an external institution to identify concentration, which implies a problem of human error because 100% manual. As a way to solve this problem, research is underway to develop a mobile radioactive waste nuclide analysis facility. The mobile radionuclide analysis facility consists of a preparation room, a sample storage room, a measurement room, a pretreatment room, and a waste storage room, and is connected to an external ventilation facility. In addition, since the automation module is built-in from the sample pre-threatening step to the separation step, safety can be improved and rapid analysis can be performed by being located in the decommissioning site. As an initial study for the introduction of a mobile nuclide analysis facility, Visiplan, a preliminary external exposure evaluation code, was used to derive the analysis workload by a single process and evaluate the exposure dose of workers. Based on this, as a follow-up study, the amount of analysis work according to the continuous process and the exposure dose of workers were evaluated. As a result of the evaluation, the Regulatory dose limit was satisfied, and in future studies, internal and external exposure doses were evaluated in consideration of the route of movement, and it is intended to be used as basic data in the field introduction process.
Decommissioning plan of nuclear facilities require the radiological characterizations and the establishment of a decommissioning process that can ensure the safety and efficiency of the decommissioning workers. By utilizing the rapidly developed ICT technology, we have developed a technology that can acquire, analyze, and deliver information from the decommissioning work area to ensure the safety of decommissioning workers, optimize the decommissioning process, and actively respond to various decommissioning situations. The established a surveillance system that monitors nuclide inventory and radiation dose distribution at dismantling work area in real time and wireless transmits data for evaluation. Developed an evaluation program based on an evaluation model for optimizing the dismantling process by linking real-time measurement information. We developed a technology that can detect the location of dismantling workers in real time using stereovision cameras and artificial intelligence technology. The developed technology can be used for safety evaluation of dismantling workers and process optimization evaluation by linking the radionuclides inventory and dose distribution in dismantling work space of decommissioning nuclear power plant in the future.