검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 10

        2.
        2015.09 KCI 등재 구독 인증기관·개인회원 무료
        We present our analysis results for an updated orbital ephemeris for the dipping low mass X-ray binary 4U 1624-49, using the light curve collected by the All Sky Monitor (ASM) on board the Rossi X-ray Timing Explorer (RXTE) and the Monitor of All-Sky X-ray Image (MAXI). To make clear dip profiles, the light curve from the ASM and the MAXI were divided into ten 500d segments and four 400d segments for ASM and MAXI light curves, respectively, and folded with the linear ephemeris proposed by Smale et al. (2001). The phases of dip centers were determined by the method adopted from Hu et al. (2008). The phase drift was then fitted with a linear function. We obtained an updated orbital period of 0.869896(1) d and a phase zero epoch of JD 2450088.6618(57). No clear orbital period derivative is detected with a 2-sigma upper limit of 1.4 X 10-6(yr)-1 from a quadratic curve fitting of the dip phase evolution.
        3.
        2015.09 KCI 등재 구독 인증기관·개인회원 무료
        X1822-371 is a low mass X-ray binary with an accretion disk corona exhibiting partial eclipses and pulsations in the X-ray band. We update its orbital ephemeris by combining new RXTE observations and historical records, with a total time span of 34 years. There were 11 RXTE observations in 2011 but the eclipsing pro le can be seen in only 4 of them. The eclipsing center times were obtained by fitting the profile with the same model as previous studies. Combined with the eclipsing center times reported by Iaria et al. (2011), the O-C analysis was processed. A quadratic model was applied to fit the O-C results and produced a mean orbital period derivative of _Porb = 1.339(25) X 10-10s=s, which is slightly smaller than previous records. In addition to the orbital modulation from the orbital profile, we also present our preliminary results for measuring the orbital parameters using the orbital Doppler effect from the pulsation of the neutron star in X1822-371. The updated orbital parameters from eclipsing profiles will be further compared with the ones from pulsar timing.
        4.
        2015.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We present the results from analysis of the Hilbert-Huang transform (HHT) for the 4 Hz quasi-periodic oscillations (QPO) around the black hole X-ray binary XTE J1550-564. The resultant Hilbert spectra demonstrate that the QPO is composed of a series of intermittent signals appearing occasionally. From the analysis of the HHT, we further found the distribution of the lifetimes for the intermittent oscillations and the distribution for the time intervals with no significant signal (the break time). The mean lifetime is 1.45 s and 90% of the oscillation segments have lifetimes less than 3.1 s whereas the mean break time is 0.42 s and 90% of break times are less than 0.73 s. We conclude that the intermittent feature of the QPO could be explained by the Lense-Thirring precession model and rules out interpretations of continual frequency modulation.
        3,000원
        5.
        2015.09 KCI 등재 구독 인증기관·개인회원 무료
        4U 1323-62, a low mass X-ray binary with an orbital period of 2.94 hr, exhibits periodic X-ray dips, which are due to absorption by the bulge of the outer accretion disk. The purpose of this study is to search for orbital period changes using archived X-ray data over a time span of 20 years. We present our preliminary results from analyzing light curves observed by RXTE, BeppoSAX, XMM-Newton and Suzaku. We used the method proposed by Hu et al. (2008) to estimate dip center time and adopted the Observed - Calculated method to measure changes in period. We obtained an orbital period of 2.941917(36) hr and a period derivative of _Porb=Porb = (-9.9 ± 3.5) X 10-7yr-1. The F-test result shows that the quadratic ephemeris is describes the evolution of the dip phases better than the linear ephemeris at a greater than 95% confidence level. More X-ray data collected from the early 80s will be included to further rfine the orbital ephemeris.
        7.
        1996.12 KCI 등재 SCOPUS 구독 인증기관·개인회원 무료
        In order to study the X-ray radiations from solar type strong interacting binary stars, we have collected X-ray data of 44i Bootis (P=0.2678 days, SP=G2+G2) from the EXOSAT data archive. Preliminarly analysis of a part of these data has been already reported by Vilhu & Heise (1986). In this paper, however, we present a more complete light curve in LE region than the previous work, and some unpublished X-ray light curves and spectrums. Using these new materials a new attempt to find the physical explanation about. some observational characteristic figures in the X-ray light curves and spectrums has been made.
        10.
        2012.03 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        A few high-mass X-ray binaries–consisting of an OB star plus compact companion–have been observed by Fermi andground-based Cerenkov telescopes like High Energy Stereoscopic System (HESS) to be sources of very high energy (VHE;up to 30 TeV) γ-rays. This paper focuses on the prominent γ-ray source, LS 5039, which consists of a massive O6.5V starin a 3.9-day-period, mildly elliptical (e ≈ 0.24) orbit with its companion, assumed here to be an unmagnetized compactobject (e.g., black hole). Using three dimensional smoothed particle hydrodynamics simulations of the Bondi-Hoyle accretionof the O-star wind onto the companion, we find that the orbital phase variation of the accretion follows veryclosely the simple Bondi-Hoyle-Lyttleton (BHL) rate for the local radius and wind speed. Moreover, a simple model,wherein intrinsic emission of γ-rays is assumed to track this accretion rate, reproduces quite well Fermi observations ofthe phase variation of γ-rays in the energy range 0.1-10 GeV. However for the VHE (0.1-30 TeV) radiation observed by theHESS Cerenkov telescope,it is important to account also for photon-photon interactions between the γ-rays and the stellaroptical/UV radiation, which effectively attenuates much of the strong emission near periastron. When this is included,we find that this simple BHL accretion model also quite naturallyfits the HESS light curve, thus making it a strong alternativeto the pulsar-wind-shock models commonly invoked to explain such VHE γ-ray emission in massive-star binaries.