검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        YAG phosphor powders were fabricated by the atmospheric plasma spraying method with the spray-dried spherical YAG precursor. The YAG precursor slurry for the spray drying process was prepared by the PVA solution chemical processing utilizing a domestic easy-sintered aluminum oxide (Al2O3) powder as a seed. The homogenous and viscous slurry resulted in dense granules, not hollow or porous particles. The synthesized phosphor powders demonstrated a stable YAG phase, and excellent fluorescence properties of approximately 115% compared with commercial YAG:Ce3+ powder. The microstructure of the phosphor powder had a perfect spherical shape and an average particle s ize of a pprox imately 30 μm. As a r esult of t he PKG t est of t he YAG p hosphor p owder, t he s ynthesized phosphor powders exhibited an outstanding luminous intensity, and a peak wavelength was observed at 531 nm.
        4,000원
        2.
        2013.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        phosphor powders were synthesized using a seed (average particle size: 5 ) by the polymer solution route. PVA solution was added to the sol precursors consisting of the seed powder and metal nitrate salts for homogeneous mixing in atomic scale. All dried precursor gels were calcined at and then heated at in atmosphere. The final powders were characterized by using XRD, SEM, PSA, PL and PKG test. All synthesized powders were crystallized to YAG phase without intermediate phases of YAM or YAP. The phosphor properties and morphologies of the synthesized powders were strongly dependent on the PVA content. Finally, the synthesized phosphor powder heated at , which is prepared from 12:1 PVA content and has an average particle size of 15 , showed similar phosphor properties to a commercial phosphor powder.
        4,000원