By the recent fast growth of e-commerce markets, it has been stimulated to study order picking systems to improve their efficiency in distribution centers. Many companies and researchers have been developed various types of order picking systems and pursued the corresponding optimal operation policies. However, the performances of the systems with the optimal policies often depend on the structures of the centers and the operation environments. Based on a simulation model that mimics a unique zone picking system operated by a real company in the Republic of Korea, this study compares several operation policies and finds the most appropriate order selection rule and worker assignment policy for the system. Under all scenarios considered in this study, simulation results show that it is recommendable to assign more efficient workers to the zones with heavier workload. It also shows that selecting the order with the maximum number of non-repeatedly visited zones from the order list provides the most consistent and stable performances with respect to flow time, makespan, and utilization of the system even under the scenario with the breakdown zones. On the other hand, selecting the order with the minimum ratio of penalty to the number of zones performs the worst in all scenarios considered.
The picking process in distribution center is one of the most difficult and time-consuming process. The improvement of picking productivity is a core element which decides efficiency of the distribution center. The time to shipping on vehicles from receiving depends on the arrangement of items or picking methods. The Pick to Light system typically is used to improve the efficiency of order picking. In some cases the layout design of Pick to Light system has been performed rather than scientific analysis by a common experience. Therefore, this study analyzed the impact of picking performance by the zone arrangement method in order picking process of Pick to Light system.