검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Sequential zone picking is an order picking method designed to enhance warehouse efficiency by dividing the storage area into multiple zones and picking items in a sequential order across these zones. Picked items are often placed in dedicated totes and transported between zones using a conveyor system, which manages the picking flow but can occasionally result in inefficiencies during the process. This study presents a variant of the sequential zone picking system, called a dual-lane zone picking system (DZP), which consists of two parallel conveyor lanes without buffers between consecutive zones. This conveyor configuration allows the picker in each zone to alternate processing between the two lanes, thereby lessening the constraints of tote transitions between zones and improving both system throughput and picker utilization. We design and conduct a series of experiments using a discrete-event simulation model to evaluate the performance of DZPs. The experiment results indicate that DZP surpasses the original single-lane zone picking system by shortening the system’s mean flow time in low flow intensity scenarios and achieving a higher maximum throughput and worker utilization in high flow intensity scenarios. Additionally, we investigate the effects of the number of zones and order batching size on the performance of DZP to gain further insights into the system’s operational control.
        4,000원
        2.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        By the recent fast growth of e-commerce markets, it has been stimulated to study order picking systems to improve their efficiency in distribution centers. Many companies and researchers have been developed various types of order picking systems and pursued the corresponding optimal operation policies. However, the performances of the systems with the optimal policies often depend on the structures of the centers and the operation environments. Based on a simulation model that mimics a unique zone picking system operated by a real company in the Republic of Korea, this study compares several operation policies and finds the most appropriate order selection rule and worker assignment policy for the system. Under all scenarios considered in this study, simulation results show that it is recommendable to assign more efficient workers to the zones with heavier workload. It also shows that selecting the order with the maximum number of non-repeatedly visited zones from the order list provides the most consistent and stable performances with respect to flow time, makespan, and utilization of the system even under the scenario with the breakdown zones. On the other hand, selecting the order with the minimum ratio of penalty to the number of zones performs the worst in all scenarios considered.
        4,000원
        3.
        2010.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The picking process in distribution center is one of the most difficult and time-consuming process. The improvement of picking productivity is a core element which decides efficiency of the distribution center. The time to shipping on vehicles from receiving depends on the arrangement of items or picking methods. The Pick to Light system typically is used to improve the efficiency of order picking. In some cases the layout design of Pick to Light system has been performed rather than scientific analysis by a common experience. Therefore, this study analyzed the impact of picking performance by the zone arrangement method in order picking process of Pick to Light system.
        4,000원