검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Aluminum alloy-based additive manufacturing (AM) has emerged as a popular manufacturing process for the fabrication of complex parts in the automotive and aerospace industries. The addition of an inoculant to aluminum alloy powder has been demonstrated to effectively reduce cracking by promoting the formation of equiaxed grains. However, the optimization of the AM process parameters remains challenging owing to their variability. In this study, the response surface methodology (RSM) was used to predict the crack density of AM-processed Al alloy samples. RSM was performed by setting the process parameters and equiaxed grain ratio, which influence crack propagation, as independent variables and designating crack density as a response variable. The RSM-based quadratic polynomial models for crack-density prediction were found to be highly accurate. The relationship among the process parameters, crack density, and equiaxed grain fraction was also investigated using RSM. The findings of this study highlight the efficacy of RSM as a reliable approach for optimizing the properties of AM-processed parts with limited experimental data. These results can contribute to the development of robust AM processing strategies for the fabrication of highquality Al alloy components for various applications.
        4,000원
        2.
        1996.06 KCI 등재 서비스 종료(열람 제한)
        Polycrystalline ZrH2 in tetragonal crystal system has been compressed in a modified Bassett-type diamond anvil cell up to 36.0 GPa at room temperature. X-ray diffraction data did not indicate any phase transitions at the present pressure range. The pressure dependence of the a-axis, c-axis, c/a and molar volume of ZrH2 was determined at pressures up to 36.0 GPa. Assuming the pressure derivative of the bulk modulus (K0') to be 4.11 from an ultrasonic value on Zr, bulk modulus (K0) was determined to be 160Gpa by fitting the pressure-volume data to the Birch-Murnaghan equation of state. Same sample was heated at 500℃ at the pressure of 9.8 GPa in a modified Sung-type diamond anvil cell. Unloaded and quenched sample revealed that the original tetragonal structure transforms into a hexagonal structured phase with a zero-pressure molar volume change of ~115.5%.