We review recent results on superhump period variations in SU UMa-type dwarf novae. Our statistical studies have revealed that the evolution of the superhump period is basically composed of three stages: stage-A, during which the superhump period is long and constant, stage-B, during which the superhump period increases as the superoutburst proceeds, and stage-C, during which the superhump period is short and constant. We also introduce a new method of estimating a mass ratio using the stage-A superhump period. This method can extend to, for example, low mass X-ray binaries or AM CVn stars if the stage-A superhump period is well determined.
열적으로 불안정한 강착원반의 비선형 유체역학적 모형에 기초하여 블랙홀 마이크로케이사의 광폭발 한계 순환주기에 대한 원반 질량의 시간적 진화 모형을 계산하였다. 블랙홀의 질량, 원반 크기 및 질량 유입률과 같은 물리적인 매개변수들은 블랙홀 X선 신성의 원형인 A0620-00에서 관측된 역사적인 1975 광폭발을 재현하도록 선택되었다. 중심부에서 원반으로 쪼여지는 조사(照射)의 시간에 따른 효과는 직접 조사와 원반위의 뜨거운 강착 흐름으로부터 굴절되어 원반에 쪼여지는 간접조사의 두 가지 방법이 고려되었다. 우리의 강착원반 열적 불안정성 모형은 광폭발의 순환과정 전반에 걸쳐 X-선 변광체들에서 관측된 광도의 전형적인 복사 광도를 설명할 수 있다. 강착원반의 최대질량 ∼4.03×1024g은 광폭발의 점화 때에 얻어지며, 최소질량 ∼8.54×1023g은 차가운 쇠퇴기와 정지기(靜止期) 때에 이루어진다. 원반의 질량은 광폭발 한계 순환주기에 걸쳐 약 5배 정도 변한다.
The collision effects in particles of the accretion disk are examined by the use of small perturbation. The collision force is assumed to be equal to 2 vV. From the equations governing collisions of such particles the local dispersion relation is obtained.
The collision model of the disk, based on collisions between the particles in the disk, is summarized. The dependence of disk stability on the collision of the particles is demonstrated. The energy spectrum produced in the disk is numerically calculated. We concluded that the results are not largely different from those of the standard disk model. It implies that the collision of the particles inside the disk may be considered here.
The collision of two particles in the accretion disk may lead to be a mechanism of heat generation. By using hydrodynamic equations, the mean free path, the collision frequency and the deflection angle due to the collision of the particles are derived as a function of the mass accretion rate. The mean free path seems to be a smaller fraction compared to the dimension parameter of the system. The radiative flux in the disk is obtained under the influence of the collision of the particles.
The stability of the geometrically thin, two-temperature hot accretion disk is studied. The general criterion for thermal instability is derived from the linear local analyses, allowing for advective cooling and dynamics in the vertical direction. Specifically, classic unsaturated Comptonization disk is analysed in detail. We find five eigen-modes: (1) Heating mode grows in thermal time scale, (5/3)(αω)-1, where alpha is the viscosity parameter and w the Keplerian frequency. (2) Cooling mode decays in time scale, (2/5)(Te/Ti)(αω)-1, where Te and Ti are the electron and ion temperatures, respectively. (3) Lightman-Eardley viscous mode decays in time scale, (4/3)(Λ/H)2(αω)-1, where Λ is the wavelength of the perturbation and H the unperturbed disk height. (4) Two vertically oscillating modes oscillate in Keplerian time scale, (3/8)1/2ω-1 with growth rate ∝(H/Λ)2. The inclusion of dynamics in the vertical direction does not affect the thermal instability, adding only the oscillatory modes which gradually grow for short wavelength modes. Also, the advective cooling is not strong enough to suppress the growth of heating modes, at least for geometrically thin disk. Non-linear development of the perturbation is followed for simple unsaturated Compton disk: depending on the initial proton temperature perturbation, the disk can evolve to decoupled state with hot protons and cool electrons, or to one-temperature state with very cool protons and electrons.
At intermediate mass transfer rates, accretion disks in binary star systems undergo a thermally-driven limit cycle instability. This instability leads to outburst episodes when the disk is bright and the flow through the disk is rapid separated by long intervals when the disk is dim and the flow through it is low. This intrinsic outburst mechanism can help to understand a wide range of astrophysical phenomena from dwarf novae to soft X -ray transients involving white dwarf, neutron star, and black holes. and to a deeper understanding of the mechanism of angular transport and viscosity in the accretion disk.