한국 남해안 금호열도 주변 다도해역의 조류특성과 해수순환 구조를 파악하기 위해 대조와 소조시 ADCP bottom tracking을 이 용한 25시간 선박 항주관측을 실시하였다. 대조시 낙조와 창조 방향은 남동-북서이며, 최강유속은 표층 약 40 cm/s이다. 개도주변은 지형적 특성으로 주변해역의 탁월유향과 다르고, 유향·유속의 분산이 크다. 전 구간 표~저층 흐름에 두드러진 경압모드 성분은 없었다. 이는 좁은 수로와 얕은 수심, 빠른 유속으로 지형성와류나 eddy로 인한 연직혼합이 활발했음을 나타낸다. 소조시 조류는 남남동-북북서, 평균유속은 대조의 85 %이다. 탁월유향은 대조보다 우세하지 못하고 지속시간도 짧다. 흐름은 연직방향 유속시어, 수평와류, 비대칭 조류혼합으로 물질의 수평·연직이동이 왕성할 것으로 추정된다. 일평균조류는 개도 서~북서 수로해역이 북서~북동, 금오도 서쪽은 서남서~남남서 방향 최 대 21 cm/s의 흐름이 존재한다. 소리도 서쪽에는 좌선환류나 와류가 형성되었다.
ADCPs have been widely used to estimate the dynamic characteristics and biomass of sound scattering layers (SSLs), and swimming speed of fish schools for analyzing SSLs spatial distribution and/or various behavior patterns. This result showed that the verification of the mean volume backscattering strength (MVBS or averaged SV, dB) acquired by the ADCP would be necessary for a quantitative analysis on the spatial distribution and the biomass estimation of the SSLs or fish school when ADCP is used for estimating their biomass. In addition, the calibrated sphere method was used to verify values of each MVBS obtained from 4 beams of ADCP (153.6 kHz) on the base of 3 frequencies (38, 120, 200 kHz) of Scientific echo sounder's split beam system. Then, the measured SV values were compared and analyzed in its Target Strength (TS, dB) values estimated by a theoretical acoustic scattering model.
This study shows that the vertical migration speed of sound scattering layers (SSLs), which is distributed in near Funka Bay, were measured by 3D velocity components acquired from a bottom moorng ADCP. While the bottom mooring type has a problem to measure the velocity vectors of sound scattering layer distributed near to surface, both the continuous vertical migration patterns and variability of backscatterers were routinely investigated as well. In addition, the velocity vectors were compared with the vertical migration velocity estimated from echograms of Mean Volume Backscattering Strength, and estimated to produce observational bias due to SSLs which is composed of backscatterers such as euphausiids, nekton, and fishes have swimming ability.
This study was performed to estimate the swimming velocity of Pacific saury (Cololabis saira) migrated offshore Funka Bay of Hokkaido using an acoustic Doppler current profiler (OceanSurveyor, RDI, 153.6kHz) established in T/S Ushio-maru of Hokkaido University, in September 27, 2003. The ADCP's doppler shift revealed as the raw data that the maximum swimming velocity was measured 163.0cm/s, and its horizontal swimming speed and direction were 72.4±24.1 cm/s, 160.1˚±22.3˚ while the surrounding current speed and direction were 19.6±8.4 cm/s, 328.1˚±45.3˚. To calculate the actual swimming speed of Pacific saury in each bins, comparisons for each stratified bins must be made between the mean surrounding current velocity vectors, measured for each stratified bin, and its mean swimming velocity vectors, assumed by reference (threshold 〉 -70dB) and 5dB margin among four beams of ADCP. As a result, the actual averaged swimming velocity was 88.6cm/s and the averaged 3-D swimming velocity was 91.3cm/s using the 3-D velocity vector, respectively.
최근 수문관측의 측정 인력과 비용의 절감과 측정 정확도를 높이기 위해 초음파를 이용한 ADCP 유량 측정 방법의 적용이 활발하게 이루어지고 있으며 점점 그 비중이 높아지고 있다. 하지만 ADCP의 유속 및 수심 측정 정확도에 대한 자료가 부족하여 ADCP 측정 결과에 대한 신뢰도를 확신하기 어렵다. 이에 본 연구에서는 직선하천에서 체계적이고 정밀한 측정을 통해 ADCP의 유속 및 수심 정확도를 분석하였 다. ADCP의 유속 측정 정확도를 분석하기 위해 횡단면에 184개의 측점에서 측정한 ADV 유속 측정 결과와 ADCP의 유속 측정 결과를 비교하여 오차를 계산하였다. 그 결과 바닥을 기준으로 수심비(y/h)가 0.4∼0.8 범위에서는 ADCP가 정확하게 유속을 측정하는 것으로 나타났으나, 수면 근처에서는 유속을 작게 측정하였고, 하상 근처에서는 유속을 크게 측정하여 정확도가 떨어지는 것을 확인하였다. 또한 ADCP의 수심 정확도를 분석한 결과 하상추적(bottom tracking) 방식이 약 6%의 오차를 보였고, 연직 빔(vertical beam) 방식이 약 9%의 오차를 보여 식생이 활착한 자연하천의 경우 하상추적 방식이 좀 더 정확하게 수심을 측정하는 것으로 확인하였다. 그리고 고정 측정 방법과 이동 측정 방법의 차이를 검토한 결과 두 방법 모두 유사한 정확도를 나타냈다. 이와 같은 연구 결과는 향후 ADCP의 측정 불확도 평가를 위한 기초 자료로 활용한다면 ADCP를 하천에 적용함에 있어 좀 더 정확한 유속 및 수심 측정이 가능할 것으로 기대된다.