검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        YAG phosphor powders were fabricated by the atmospheric plasma spraying method with the spray-dried spherical YAG precursor. The YAG precursor slurry for the spray drying process was prepared by the PVA solution chemical processing utilizing a domestic easy-sintered aluminum oxide (Al2O3) powder as a seed. The homogenous and viscous slurry resulted in dense granules, not hollow or porous particles. The synthesized phosphor powders demonstrated a stable YAG phase, and excellent fluorescence properties of approximately 115% compared with commercial YAG:Ce3+ powder. The microstructure of the phosphor powder had a perfect spherical shape and an average particle s ize of a pprox imately 30 μm. As a r esult of t he PKG t est of t he YAG p hosphor p owder, t he s ynthesized phosphor powders exhibited an outstanding luminous intensity, and a peak wavelength was observed at 531 nm.
        4,000원
        2.
        2023.05 구독 인증기관·개인회원 무료
        To improve the safety of nuclear fuel, research on the advanced nuclear fuel (UO2) by adding various trace elements is being conducted. For example, the addition of metals such as Mo, Cr can improve the thermal conductivity of nuclear fuel, minimizing the diffusion of fission products. Trace metal oxide additives (SiO2, Cr2O3, Al2O3, etc.) can suppress the release of fission gases. In general, complete dissolution of the fuel sample is required for chemical analysis to determine its elemental compositions. Among widely used metal oxide additives, aluminum oxide is difficult to dissolve in nitric acid due to its excellent thermal and chemical stability. In this study, we investigated on different chemical dissolution methods by applying a microwave digestion system under various acid solutions. We confirmed the validity of the digestion method by carrying out trace element analysis using an Inductively-Coupled Plasma Atomic Emission Spectrometer (ICP-AES).
        3.
        2016.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Aluminum oxide (Al2O3) thin films were grown by atomic layer deposition (ALD) using a new Al metalorganic precursor, dimethyl aluminum sec-butoxide (C12H30Al2O2), and water vapor (H2O) as the reactant at deposition temperatures ranging from 150 to 300 oC. The ALD process showed typical self-limited film growth with precursor and reactant pulsing time at 250 oC; the growth rate was 0.095 nm/cycle, with no incubation cycle. This is relatively lower and more controllable than the growth rate in the typical ALD-Al2O3 process, which uses trimethyl aluminum (TMA) and shows a growth rate of 0.11 nm/ cycle. The as-deposited ALD-Al2O3 film was amorphous; X-ray diffraction and transmission electron microscopy confirmed that its amorphous state was maintained even after annealing at 1000 oC. The refractive index of the ALD-Al2O3 films ranged from 1.45 to 1.67; these values were dependent on the deposition temperature. X-ray photoelectron spectroscopy showed that the ALD-Al2O3 films deposited at 250oC were stoichiometric, with no carbon impurity. The step coverage of the ALD-Al2O3 film was perfect, at approximately 100%, at the dual trench structure, with an aspect ratio of approximately 6.3 (top opening size of 40 nm). With capacitance-voltage measurements of the Al/ALD-Al2O3/p-Si structure, the dielectric constant of the ALDAl2O3 films deposited at 250 oC was determined to be ~8.1, with a leakage current density on the order of 10−8 A/cm2 at 1 V.
        4,000원