Anthricin (Deoxypodophyllotoxin), a naturally occurring flavolignan, has well known anti-cancer properties in several cancer cells, such as prostate cancer, cervical carcinoma and pancreatic cancer. However, the effects of Anthricin are currently unknown in oral cancer. We examined the anticancer effect and mechanism of action of Anthricin in human FaDu hypopharyngeal squamous carcinoma cells. Our data showed that Anthricin inhibits cell viability in a dose- and time-dependent manner (IC50 50 nM) in the MTT assay and Live & Dead assay. In addition, Anthricin treated FaDu cells showed marked apoptosis by DAPI stain and FACS. Furthermore, Anthricin activates anti-apoptotic factors such as caspase-3, -9 and poly (ADP-ribose) polymerase (PARP), suggesting that caspase-mediated pathways are involved in Anthricin- induced apoptosis. Anthricin treatment also leads to accumulation of the pro-apoptotic factor Bax, followed by inhibition of cell growth. Taken together, these results indicate that Anthricn-induced cell death of human FaDu hypopharyngeal squamous carcinoma cells is mediated by mitochondrial-dependent apoptotic pathway. In summary, our findings provide a framework for further exploration on Anthricin as a novel chemotherapeutic drug for human oral cancer.
Treatment of oral cancers with chemotherapeutic agents become evaluated as an effective method to reduce cancer cell proliferation. Anti-proliferative and anti-oral cancer activities of momordin I on oral cancer cells were evaluated in this study. Momordin I was originally purified from a natural product, Ampelopsis radix and showed the antiproliferative activity against oral carcinoma, KB cells. Obtained value was approximately 104μM/mℓ. Time-and dose-dependent chromosomal DNA fragmentations were observed in momordin I-treated KB cells. Flow cytometry analysis showed time-dependent apoptotic cell appearance after treatment of momordin I. Approximately 18.6% apoptotic cells were observed at 72 hours after of momordin I treatment. These observation were consistent with the results obtained in DNA fragmentation analysis. These data suggest that momordin I has anti-proliferative effect and induces cell death in KB cells through apoptosis.
Resveratrol (3,4',5-trihydroxy-trans-stilbene), a naturally occuring polyphenol compound which present in the skin of grapes and red wine has been considered to posses chemopreventive and antioxidant properties. However, little is known about the cellular actions by which resveratrol mediates its therapeutic effects. In this study, the effect of resveratrol on cell proliferation and induction of apoptosis in human osteogenic sarcoma (HOS) cells was investigated. IC50 value was determined to be approximately 60μg/mℓ. Chromosomal DNA framgmentation analysis showed the appearance degraded DNA in time-and dose-dependent manner upon treatment of resveratrol. In order to observe the molecular mechanism involved in resveratrol-induced apoptosis, Western blot analysis was performed. We observed the decrease in the level of procaspase-3, the zymogen form of active caspase-3 in resveratrol-treated cells. This result implies that caspase-3 is activated upon treatment of resveratrol. The activation of caspase-3 was confirmed by the cleavage of poly(ADP-ribose) polymerase. Taken together, our data demonstrate that resveratrol has anti-proliferative effect on HOS cells and induced apoptosis through activation of caspase-3 and PARP cleavage.
In the present work we investigated the effects of lactic acid bacteria (LAB) isolated from kimchi on prolifera-tion and apoptosis of cancer cells. The cell-free supernatant concentrate of Lactobacillus brevis OPK-3 significantly retar-ded the proliferation of human acute promyelocytic (HL60), human histiocytic (U937), and mouse lymphocytic (L1210)leukemia cell lines in vitro at concentrations over 2.25-9.0 mg/mL. The treatments of the concentrate leaded to the increasedapoptosis and decreased mitochondrial transmembrane potential in cultured U937 leukemia cell lines. In addition, the treat-ments of the concentrate showed the increased expression of p53 gene in cultured U937 and HL60 leukemia cell lines. Onthe other hand, the cell-free supernatant concentrate of control L. brevis strain (KCCM 41028) showed a relatively littleeffect on the cancer cell proliferation, apoptosis, and mitochondrial transmembrane potential at the similar concentrationranges compared with the L. brevis OPK-3 samples. These results suggest that the consumption of L. brevis OPK-3 could bebeneficial for the inhibitory action on leukemia cell proliferation and for the stimulatory action on the cancer cell apoptosis.